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Abstract

We study the long-run interaction between Germany’s economic growth trajec-
tory and demographic aging. Using a comprehensive dataset, we leverage the clas-
sical production function approach to estimate potential output growth between
1970 and 2070. We account for the inherent uncertainty in our projections using
Bayesian estimation techniques. Overall, Germany’s potential output growth up
to 2070 will be low if current economic trends persist. In particular, the diminish-
ing labor volume, coupled with sluggish total factor productivity and investment
trend growth, contributes to the decline. Our results highlight the significance of
demographic factors in shaping economic trajectories and the critical need for policy
interventions to mitigate adverse effects. Our analysis can serve as valuable inputs
for formulating long-term economic policies.

Keywords: demographic aging, production function, potential output, Germany,
long-run forecast, economic growth

JEL classification: E13, E17, E23
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1 Introduction

The economic boom of the post-war period went along with high birth rates in many
advanced economies, especially in Europe and Japan, until the 1960s. However, since then,
birth rates have declined, and average life expectancy has increased. Consequently, many
advanced economies are experiencing rapid aging. For instance, the old age dependency
ratio - the proportion of individuals aged over 65 to those aged 20-65 - is projected to
significantly change from 26.8 in 2000 to 37.9 in 2023 in Germany, with similar trends
observed in France, Italy, Japan, and the United Kingdom. In Germany, demographic
aging is expected to be particularly strong in the coming years as the baby boomer
generation of the 1950s and 1960s enter retirement age (see Figure 1). This demographic
shift poses direct challenges to economic growth, for instance through the reduction in
workforce entrants and increase in workforce exits. A growing body of research is now
focusing on understanding the economic mechanisms that underlie long-term economic
ramifications of demographic aging (see, e.g. Kotschy and Bloom 2023).

Figure 1

In this paper, we study the effects of demographic dynamics on the German economy in
a two step approach. First, we present a detailed semi-structural growth model in the
tradition of production function modelling (Solow 1956, Romer 1986) that enables esti-
mation of potential output since 1970 and explicitly accounts for demographic dynamics.
Using this new tool, we forecast potential output in Germany until 2070. Second, coun-
terfactual experiments and micro-data evidence help to rationalise our results, especially
with respect to the role of demographic dynamics in Germany’s deteriorating economic
outlook.

Our growth model features a detailed specification of labor and capital inputs that are
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tailored to suit the German economy’s characteristics. This allows us to discipline the
long-run projections and generate informative, non-mean-reverting dynamics. In partic-
ular, to examine the effects of demographic aging on the composition of labor input, the
labor participation rate is delineated by an age-cohort model and average hours worked
account for deviations between part-time or full-time employees as well as self-employed
workers. For capital, we use the perpetual inventory method and account for productivity
differences across various types of capital goods weighted by their capital utilization costs
(OECD 2009, Knetsch 2013).

Related research emphasizes the role of uncertainty in the very long-run (Müller et al.
2022). While the structure of our growth model is similar to established methods used
by institutions like the European Commission and the US Congressional Budget Office
for potential output estimation (Havik et al. 2014, Shackleton 2018), we propose substi-
tuting the commonly used filter by Hodrick and Prescott (1997) with a Bayesian filtering
algorithm. A Bayesian filter can better account for different sources of uncertainty, e.g.
parameter uncertainty, that may co-determine long-run results. The associated state-
space formulation of our filter gives rise to a natural way of extrapolating the signals into
the distant future by means of straightforward, customizable trend-growth specifications.

Our long-term projections of potential output indicate that Germany’s growth is expected
to slow down due to substantial and continuous demographic changes. More precisely,
our results suggest that median growth rates are likely to remain at an average level of
approximately 0.4% throughout the 2020s. Without corrective measures, the challenge
of slow growth could persist over the next decades. We also identify several factors
contributing to the current decrease in Germany’s potential growth rates compared to the
high levels of around 1,4% per annum seen in the 2010s. While the COVID-19 pandemic
and the recent energy crisis may have left scars on the supply side of the economy, the
main driver of this adverse trend is the shrinking labor volume as a consequence of an
aging German economy. In an auxiliary structural mode, we find that demographic aging
affects the labor input of an economy not only through the size of the workforce but also
through its composition. This is the case, as young and old cohorts deviate in their labor
market characteristics such as participation rate, working hours, and part-time rate. The
insights derived from our projections can serve as valuable inputs for long-term economic
policy-making and guide actions related to achieving enduring objectives, such as social
policy reforms, pension system design or the transition towards a greener economy (Müller
et al. 2022).

The paper’s structure is as follows: Section 2 outlines the model structure, and Section 3
elaborates on the signal extraction problem. In Section 4, we discuss estimation results.
In Section 5, we closely examine the recent deterioration in long-run growth outlook, and
Section 6 showcases the model’s capabilities for policy evaluation. Section 7 concludes.
A set of appendices delve into filtering and estimation algorithms, prior elicitation ap-
proaches, model specifications, data, and additional results. Additionally, a Technical
Appendix presents detailed estimation and specification results related to total factor
productivity, labor volume, and capital services.
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2 The Production Function Approach

To evaluate the impact of demographic changes on long-term economic growth, our
methodology is anchored in the tradition of macroeconomic theory, as outlined by Solow
(1956), Romer (1986), Mankiw et al. (1992), Galor (2011). This tradition emphasizes the
essential role of labor, and by extension, demographic factors, in determining the equilib-
rium output. Here, ”equilibrium output” is defined as the level of output attained when
input factors are used at its sustainable capacity. Thus, our aim is to model demography
as a key determinant of potential output yt. This approach of analyzing potential output
through production functions, viewed as the economy’s equilibrium output trajectory, is
well-established. Following this tradition, particularly prevalent in policy-making circles
(CBO 1995, Havik et al. 2014, Shackleton 2018, Chalaux and Guillemette 2019, Breuer
and Elstner 2020), we estimate the inputs of capital and labor, along with total factor
productivity. We then apply a Cobb-Douglas aggregator to compute potential output.

yt = at(htlt)
αkt

(1−α)
, (1)

where yt, at, ht, lt and kt are the t-th entries in T ×1 vectors of potential output, potential
total factor productivity, potential human capital, potential labor and potential capital
services. 0 ≤ α ≤ 1 is the output elasticity of labor, a known constant. We establish the
value of α as 0.66, a choice that closely aligns with the average empirical labor share of
gross value added in Germany over the sample period. Note that capital includes tangible
as well as intangible assets and that treating human capital as labor-augmenting factor
allows to preserve constant returns to scale.

We quantify labor input using total hours worked. To gauge the transmission of demo-
graphic aging, we decompose total hours worked into four components as

lt = btwt(1− ut)st, (2)

where lt denotes total hours worked, bt represents the working-age population, wt rep-
resents aggregate labor participation, st represents the average number of hours worked
per worker, and ut signifies the natural rate of unemployment. This specification enables
to examine three possible transmission channels of demographic aging. First of all, the
working-age population, determined by birth rates, death rates, and migration patterns,
is the key determinant of the potential labor force. Second, the labour force participation
represents the proportion of the working-age population (15-74 year olds) actively engaged
in the labor market. Demographic aging implies a shift of aggregate labor participation
rates to those of older workers (which are typically lower). Finally, the average number
of hours worked by individuals in the labor force is influenced by various factors such
as part-time, full-time and self-employment rates and hours that are co-determined by
worker’s age (Wanger 2023).
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The equations characterizing aggregate participation as well as average hours worked are

wt =
5∑
i=1

btibt
−1wti (3)

st = sstq
s
t + (1− qst )(s

p
t q
p
t + (1− qpt )s

f
t ) (4)

where

• wti and bti denote labor participation of age group i as well as the share of age group
i of the working age population,

• st
p is the number of hours worked by part-time employees

• st
s is the number of hours worked by self-employed persons

• st
f is the number of hours worked by full-time employees

• qt
s is the rate of self-employment

• qt
p is the rate of part-time employment

• aggregate labor participation is derived from labor participation in the age groups
15 - 19 year olds, 20 - 59 olds, 60 - 64 year olds, 65-69 year olds, as well as 70 - 74
year olds

In addition, the structural unemployment rate is critical in indicating the equilibrium
level of unemployment in an economy. When unemployment falls below the structural
unemployment rate, it can exert upward pressure on wages and inflation. Conversely,
when unemployment exceeds the structural unemployment rate, it may result in defla-
tionary pressures. To preserve constant returns to scale, we model human capital as a
labor-enhancing factor, as shown in Eq. 1. It is given as

ht = exp{βqt}. (5)

In this equation, β represents the marginal rate of return to education in Germany, which
we calibrate to β = 9% in line with studies like Anger et al. (2010) and Pfeiffer and
Stichnoth (2021). q is derived from the average number of years of schooling, based on
extended data from de la Fuente and Doménech (2006).

To complete the specification of our model, we assess the role of capital in the production
process. To this end, we adopt the capital utilization cost approach (OECD 2009, Knetsch
2013). The intuition is to approximate actual capital services by means of weighting
gross capital stocks (as a proxy for overall productive capital) of four capital goods,
i.e. equipment, residential and non-residential buildings as well as immaterial capital,
by their shares in capital utilization costs. The latter approximate the productivity of
capital goods. When factors are compensated with their marginal product, higher capital
utilization costs imply higher productivity. The year-on-year change in capital services is
represented as

k̇t =
4∑
j=1

v̇t
j(
cj

cj−t
)−1. (6)

Here, ˙ denotes single-period growth rates, kt
j represents capital services, vt

j denotes gross



5

fixed assets of capital good j, and ct
j is the capital utilization costs of capital good j. We

construct the capital services kt as a Törnqvist index, following OECD (2009), starting

from k̇t with the base year 1969 and an initial value of 100. The equations characterizing
gross capital stock growth as well as capital utilization costs for capital good j are given
as

v̇t
j = v̇t

j+–v̇t
j− (7)

ct
j = max(0, rt + δt

j − E(dt
j
)), (8)

where (omitting the time index t)

• kj denotes use of capital,
• vj denotes gross fixed assets of capital good j,
• v+

j
(v−

j
) denotes additions (disposals) to gross fixed assets of capital good j,

• cj denotes capital costs of capital good j,
• cj− denotes total capital costs less than capital costs of capital good j,
• r is the required return to capital,
• δj is the depreciation rate of capital good j, and
• E(dj) is the expected return to capital good j.

The required return to capital r derives from the zero-profit condition

(1− α)yt = rtv
j
t , (9)

i.e., from an aggregate perspective, return to capital cannot be smaller or larger than the
capital share of output over gross fixed assets. The depreciation rate can be computed as
volume of depreciation for capital good j in t over volume of net fixed assets of capital
good j in t. Finally, as we assume rational agents with full information, we approximate
expected returns (approximated by the capital good specific investment deflator) by the
current (estimated) trend growth rate.

To obtain real disposals and depreciation volumes, we adopt the approach of the Federal
Statistical Office and implement the perpetual inventory method (OECD 2009, Schmal-
wasser and Schidlowski 2006). That is, the distribution of the real disposals (i.e. the
mortality function of investments) of investment year i is derived from the density func-
tion of the gamma distribution as

p(ñ, n, a, b) =
ab

Γ(b)
ñ−bnb−1exp

(
−an
ñ

)
. (10)

This density has two strictly positive hyperparameters, namely the rate parameter a and
shape parameter b, that control its skewness. For most capital goods, the Federal Sta-
tistical Office office assumes a = b = 9 (Schmalwasser and Schidlowski 2006). Further
assumptions on the average service life ñ and the service life n that determine the dis-
tribution of real disposals. For a given reporting year t, the total real disposal volume
obtains as cumulated sum of the real disposals of the previous i investment years with
a service life of n = t – i years. Table 1 summarizes our assumptions on the service
years and distribution parameters that are calibrated to match the data and the available
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information on the service life by the Federal Statistical Office.

We use long-run investment series (that incorporate information on investment in the
German Democratic Republic as well as in West Germany prior to 1990) provided by the
Federal Statistical Office for construction and equipment in order to achieve a close match
to the official disposal and depreciation data after 1990.

Equipment Residential Buildings Non-Residential Buildings Other Capital
Average length of service life (years) 15 83 49 5

a 9 7 8 9
b 9 7 8 9

Table 1 Parameters of disposal distribution for each capital good. The service life of
equipment and residential buildings are time-varying, based on confidential information
by the Federal Statistical Office. We report the means.

It is then straightforward to derive the real depreciation volumes as straight line depre-
ciation where the depreciation value in the investment and disposal year is only half the
full-year value,

υ(n) =


1

2n
t = i or t = i + n

1

n
else.

(11)

Thus, depreciation volumes for year n for a given investment year i obtain as 1 −∑i
n=0 p(ñ, n, a, b) multiplied with the initial investment in year i and depreciation volumes

in year t obtain as cumulated depreciation volumes for investment years i (Schmalwasser
and Schidlowski 2006).

3 Estimation and Projection

Estimating Eqs. (1) – (6) directly is a highly challenging and resource-intensive task.
Therefore, we employ an approach that is inspired by methods used by institutions like
the European Commission and the US Congressional Budget Office: Instead of estimating
the entire model in one go, we break it down into its individual components, and Eqs. (1)
– (6) serve as the rules of aggregation. However, various challenges arise.

A growing field of research on long-run forecasting highlights the critical importance of
including measures of uncertainty in long-term economic forecasts. Müller and Watson
(2016) adopt a comprehensive dual methodology, integrating both Bayesian and frequen-
tist approaches, to examine and forecast long-run trends in crucial macroeconomic vari-
ables, such as GDP growth rates and population trends. This method effectively addresses
stochastic growth patterns and slow mean reversion, while also pointing out the signifi-
cant uncertainties in projections extending from 10 to 75 years. Similarly, Müller et al.
(2022) use a Bayesian factor model to investigate the prolonged growth of GDP per capita
across 113 nations over 118 years, offering predictive distributions for their future eco-
nomic performance over the next century. Again, this analysis underscores the profound
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uncertainty in predicting economic growth over extended periods, despite the analysis of
detailed historical data.

Our work introduces a further challenge for long-run forecasting: unlike previous studies,
we aim to predict an unobserved quantity – potential output – over an extensive time
horizon. This task is complicated by the fact that observed data on inputs and outputs
are influenced by cyclical variations due to business cycle effects. Consequently, in a
first step, we must decompose observed output yt into its potential component yt and its
cyclical counterpart ỹt. Similar needs arise for capital and labor inputs. Many production
function approaches, such as the approach by the European Commission often employ
the Hodrick and Prescott (1997) filter to differentiate between transient and permanent
signals (Havik et al. 2014, Shackleton 2018, Chalaux and Guillemette 2019, Breuer and
Elstner 2020). However, this approach has serious shortcomings. For instance, due to
their susceptibility to significant revisions (Orphanides and van Norden 2002, Hamilton
2018, Quast and Wolters 2022, Berger and Ochsner 2022), these filters methods yield
unreliable signals. Moreover, they may oversimplify the uncertainty estimation, e.g. due
to omitting parameter uncertainty. Such limitations present considerable challenges for
policymakers focused on long-term strategic decisions.

We tackle these issues by specifying an alternative filtering algorithm to separate cycli-
cal fluctuations from long-term trends.1 Bayesian estimation in the spirit of Chan and
Jeliazkov (2009) and Mertens (2023) enables the reliable estimation and prediction of un-
certainty – including uncertainties about parameters and latent states –, as emphasized
by Müller and Watson (2016) and Müller et al. (2022). For a time series xt, our signal
extraction problem is characterized by a system similar to that of Chan et al. (2013), i.e.

xt = xτt + xct (12)

xτt = xτt−1 + xgt + ητt ητt ∼ T N
(
0, σ2

τ

)
[xτt −xτt−1,x

τ
t −xτt−1)

(13)

xgt = xgt−1 + ηgt ηgt ∼ N
(
0, σ2

g

)
(14)

xct = ϕtx
c
t−1 + ηct ηct ∼ N (0, exp (ψt)) (15)

ϕt = ϕt−1 + ηϕt ηϕt ∼ T N
(
0, σϕ

)
[0−ϕt−1,1−ϕt−1)

(16)

ψt = ψt−1 + ηψt ηψt ∼ N
(
0, σ2

ψ

)
(17)

where N denotes the normal distribution, T N denotes the truncated normal distribution,
and the innovation distribution subscript in Eq. 13 indicates bounded support.

The innovations are mutually orthogonal across Eqs. 12 – 17 in all t = 1 . . . T and xτt
and xτt are known constants. For an in-depth understanding of the precision sampler
employed to differentiate between trends and cycles and to project the trends into the
distant future, please refer to Appendix G. Our sample begins in 1970 and incorporates
the short-run business cycle forecasts for investment, deflators, unemployment and aver-
age working hours for the current and the next year as data.2 Table 2 summarizes the
information on data. Note that the system of Eqs 12–17 gives rise to a straightforward

1A few series, treated as random walks, are exceptions. See Appendix H
2For prior specifications and detailed estimation results, see the Technical Appendix.



8

way to project trends and cycles into the future by drawing from the innovation distri-
butions and iterating on the state equations. Regarding our projection methodology, we
forecast all components except for the population, which we source from the population
forecast by the Federal Statistical Office. Thus, population dynamics are entirely exoge-
nous to our model. The scenario of the Federal Statistical Office underlying our baseline
specification assumes an average birth rate of 1.55 children per woman, a gradual but
moderate increase in life expectancy until 2070, and an average net migration of 250,000
people starting in 2033.

Name Description Time period Unit Source
Average years of
schooling

Average years of schooling 1960 – 2015 Number of years de la
Fuente and
Doménech
(2006)

Commuter balance Difference of incoming and outgoing
commuters

1970 – 2022 Number of persons Federal Sta-
tistical Office

Investment deflator Real investment deflators for all capital
goods

1970 – 2022 Chain index Federal Sta-
tistical Office

Historical hours Total hours worked 1970 – 1990 Number of hours Federal Sta-
tistical Office

Hours Hours worked by part-time, full-time
and self-employed workers

1991 – 2022 Number of hours Institute for
Employment
Research

Real investment Real investment volumes into capital
stock for all capital goods

1970 – 2022 Billion euros, chained vol-
umes, base year = 2015

Federal Sta-
tistical Office

Real gross capital
stock

Real gross capital stocks for all capital
goods

1970 – 2022 Billion euros, chained vol-
umes, base year = 2015

Federal Sta-
tistical Office

Real net capital stock Real net capital stocks for all capital
goods

1970 – 2022 Billion euros, chained vol-
umes, base year = 2015

Federal Sta-
tistical Office

Real depreciation Real depreciation volumes for all capital
goods

1970 – 2022 Billion euros, chained vol-
umes, base year = 2015

Federal Sta-
tistical Office

Real disposals Real disposal volumes for all capital
goods

1991 – 2022 Billion euros, chained vol-
umes, base year = 2015

Federal Sta-
tistical Office

Real gross domestic
product

Real gross domestic product 1970 – 2022 Billion euros, chained vol-
umes, base year = 2015

Federal Sta-
tistical Office

Part-time employ-
ment

Number of part-time employed workers 1991 – 2022 Percent Institute for
Employment
Research

Population Population data as of January 1 of each
year by age and gender

1960 – 2022 Number of persons Eurostat

Population projection Population projection as of December 31
of each year by age, gender and various
projection assumptions.

2022 – 2070 Number of persons Federal Sta-
tistical Office

Self-employment Number of self-employed workers 1991 – 2022 Percent Institute for
Employment
Research

Working population Working population by age group and
gender

1970 – 2022 Number of persons OECD

Table 2 Information on data. All data are sampled at yearly frequency, except for the
data from de la Fuente and Doménech (2006), which are sampled in five-year intervals.
All capital goods refer to equipment, residential and non-residential as well as other
capital, respectively. Data before 1990 refer to West Germany. We account for German
reunification by re-chaining the West Germany data to the 1991 data of the Federal
Republic of Germany.

The filter specified in Eqs. 12–17 builds upon a broad consensus in the broadly empirical
literature about the properties of macroeconomic series, especially regarding the merits of
stochastic trend models, as in Eq. 13 for key economic measures like inflation and unem-
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ployment (see, e.g. Smets and Wouters 2007, Chan et al. 2013, 2016) or output (Morley
et al. 2003, Grant and Chan 2017a,b, Chan et al. 2019) as well as total factor productivity
(Chan and Wemy 2023). Moreover, Chan et al. (2013, 2016) suggest that bounded trend
models are effective for modeling and forecasting unemployment and inflation. In our
application, bounded trend estimation is needed, e.g. in the case of filtering rates, by
definition, that lie between zero and one-hundred, which would be hard to achieve by al-
ternative transformations (for instance, the log-transformation would only avoid negative
values, but would enable estimation of aggregates that are bounded from above). The
precise nature of trend growth for macroeconomic aggregates (Eq. 14) remains debated,
particularly regarding the occurrence and timing of breaks (for instance, in the case of
output, various specifications with and without breaks, are discussed e.g. in Morley et al.
2003, Grant and Chan 2017a,b, Berger and Kempa 2019). Considering various economic
aggregates, including labor and capital inputs, to predict potential output, we adopt a
more agnostic, stochastic approach to trend growth, as displayed in Eq. 14.

We use the trend growth specification in Eq. 14 for all capital- and TFP-related series.
Note that E(xt+1) = xt. However, since some labor-market indicators display negative
trend growth, this characteristic will inevitably pose challenges when forecasting these
indicators. When trend growth is consistently negative, an infinite sum of such values
approaches its lower bound (or negative infinity if there is no specified lower bound) in
the limit. In many economic contexts, this assumption is not reasonable or practical. For
instance, several indicators related to working hours exhibit negative trend growth. Using
Eq. 14 in such cases would imply that average working hours will eventually reach its
lower trend bound zero. However, zero average working hours would imply that potential
output is also zero, which is not a well-grounded belief.

To ensure that our model is well-behaved in the limit and does not lead to unrealistic
outcomes, we aim to exclude these problematic cases. Therefore, we deviate from the
baseline filter for labor series and use the mean-reverting trend growth specification

xgt = µ+ ϕgxgt−1 + ηgt ηgt ∼ N
(
0, σ2

g

)
, (18)

with ϕg on the complex unit circle, such that E(xt+1) =
µ

1− ϕg
.3 Similarly, when trend

growth as given by Eq. 14 is positive, it implies summing over positive values in the
limit. From an economic theory perspective, this behavior is desirable, especially for
TFP. However, to ensure that the accumulation of capital is realistic and accounts for
its finite service life, we employ a vintage structure, where capital goods exit the capital
stocks based on their disposal and depreciation distributions. These distributions are
derived from a Gamma density that is governed by the average service life specific to
capital goods.4

A further noteworthy feature of our specification is its incorporation of a stochastic volatil-
ity component within the cycle (Eq. 15), as discussed by Kim and Nelson (1999). This

3In a Bayesian context, the additional estimation of µ and ϕg is simple and does not impose too much
computational burden; µ is a linear regression parameter and for estimating ϕg, we refer to Chib and
Greenberg (1994).

4For more information, please refer to Appendix C.
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addition of stochastic volatility enhances the decomposition’s resilience against significant
economic shocks (Berger et al. 2016, Chan et al. 2016, Berger and Kempa 2019), such as
those witnessed during crises like the COVID-19 pandemic (2020-21) or the recent energy
crisis in 2022. The time-varying parameter ϕt plays a critical role in determining the
persistence of the cyclical process, as in Chan et al. (2016).5

All of our priors are derived from a straightforward, conjugate normal-gamma framework.
In our trend-cycle decomposition, we often calibrate the initial conditions of the trend
and set relatively informative priors on the initial conditions of trend growth and their
innovation variances. Overall, our approach to these priors strikes a balance between using
prior knowledge where it is available and allowing the model the freedom to adapt and
learn from the data. This helps us achieve convergence in a reasonable amount of time.
Additionally, using priors that focus on small values for innovation variances aligns with
economic theory, which suggests that potential and potential growth in macroeconomic
aggregates are slow-moving signals compared to business cycle fluctuations. Regarding the
cyclical components, we typically set loose priors on the stochastic volatility components
and, if applicable, on autoregressive coefficients. For the second model class, random walk
models, our priors are generally quite lenient.

After estimating the individual components, we employ Eqs. 1 – 6 as aggregation rules
for the estimated trend components. This approach, commonly used in the literature and
at policy institutitions and (international) organizations such as the OECD (Chalaux and
Guillemette 2019), the European Commission (Havik et al. 2014) and the German Coun-
cil of Economic Experts (Breuer and Elstner 2020). However, unlike the aforementioned
institutions that rely on the Hodrick and Prescott (1997)-filtered means of the trends, we
apply this procedure to the entire distribution samples. This comprehensive procedure
enables us to derive estimates of the distributions for l, h, k, and a, ultimately leading to
our estimation of y.6 Subsequently, we extract robust statistics, such as the median along
the time dimension from these distribution samples, facilitating point-inference. Whereas
the median of the predictive distribution serves well as ‘the’ expectation of German eco-
nomic growth, we can derive optimistic (pessimistic) expectations from quantiles above
(below) the median quantile.7

5In addition, specifying the persistence parameter to be time-varying achieves that revisions are less
likely and less severe, as each parameter for a given time t is only determined by its own past and the
current data, such that new extreme observations do not lead to large parameter revisions for data in the
distant past.

6In total, our process entails estimating 29 disaggregated variables, including factors like equipment
investment and labor participation segmented by age groups. For more details, please refer to the Tech-
nical Appendix. Given that we obtain 360,000 draws from over 300 (partly multivariate) conditional
posteriors, discard the initial 10,000 as burn-in, and only retain every seventh draw to enhance conver-
gence, this process demands a considerable amount of time and necessitates hardware capable of running
multiple models concurrently.

7Note that while the individual components, obey (truncated) (log-)normal distributions (see Techni-
cal Appendix), the nonlinear transforms l, h, k, a, and y of these normal samples do not. Therefore, their
distribution samples can (but not necessarily need to) have non-zero skewness, which is a very useful
feature when it comes to judging economic risks.
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4 Demographic Dynamics and German Potential Out-

put Growth 1970 – 2022

In this section, we discuss estimation results with a particular focus on how demographic
dynamics have shaped the labor input and thereby potential output in the estimation
period that spans 1970 to 2022. Recall that population size affects labor volume growth
by altering components like the labor force and the aggregated labor participation rate.
The latter is a weighted average of age-group specific labor participation rates (see Eq.
3).

Figure 2

Figure 2 displays estimated German potential output alongside gross domestic product
(GDP) and Figure 3 shows the contributions of capital, labor, and TFP to potential out-
put growth. First of all, note that the real growth rate of Germany’s potential output has
declined significantly over the years, from approximately 3.3% at the onset of the estima-
tion period in 1970 to around 0.5% in 2022. It averaged 1.5% per annum in the decade
between 2010 and 2019. However, potential output growth experienced a temporary peak
in 2022, driven by a net population influx of approximately 1.5 million people during that
year. Various factors contributed to the slowdown in the growth rates of potential output
since 1970.

The overall decline aligns with the literature that finds a tendency for economies to con-
verge towards their long-run (i.e. steady-state) growth rates in the absence of shocks. The
convergence in economic growth is attributed to two primary factors, as identified in the
literature. Firstly, neoclassical and newer theoretical models (Ramsey 1928, Solow 1956,
Barro and Sala-i Martin 1997, Acemoglu 2006), propose that capital growth per capita
converges to a steady state, a phenomenon that is also empirically validated (Barro and
Sala-i Martin 1991, Barro 2015). Secondly, recent research indicates a constant reduction
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in TFP growth in developed economies over time. The difficulty in discovering new ideas
for research and development leads to a decrease in innovations and, consequently, TFP
(Gordon 2012, Bloom et al. 2020). Consistent with this literature, substantial decreases
in the growth rate of TFP have played a significant role in the decline of potential output
growth, also for Germany.8 The trajectory of TFP growth in Germany has been con-
sistently downward since at least the late 1990s. According to our model, TFP’s trend
growth slowed significantly from around 1.0% in 1999 to 0.3% in 2011, and it has remained
at this lower level since. This trend aligns with a broader productivity slowdown observed
in numerous advanced economies, influenced by a combination of factors (Bloom et al.
2020, Goldin et al. forthcoming). In addition, studies highlight that innovations elevate
growth more strongly when production factors are efficiently allocated (Restuccia and
Rogerson 2008, 2017), but evidence suggests a decline in allocation efficiency over time
(Gopinath et al. 2017).

Figure 3

Throughout most of the sample period, the labor volume’s contribution to potential out-
put growth remained negative (see Figure 3, orange bars). Notably, potential labor,
measured in hours, experienced contraction from 1970 to 1999, resulting in an average re-
duction of potential growth by about 0.5 percentage points per year. However, reductions
of potential output growth due to negative labor volume growth were much more pro-
nounced during the 1970s and 1980s. To investigate the main drivers of this decline, we

decompose labor volume growth l̇ in the spirit of Eq. 4 into contributions from working-

age population dynamics ḃ, labor participation ẇ, structural unemployment u̇ and average

hours worked ḣ.

8Our TFP growth estimates, accounting explicitly for the accumulation of intangible assets and
human capital formation, are generally lower than those in other studies (e.g. Havik et al. 2014).
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Figure 4

Figure 4 reveals considerable fluctuations in the underlying labor components. Inter-
estingly, the primary factor behind this decline was the consistent decrease in average
working hours, contributing an average of -0.9 percentage points to the labor volume
annually. Despite this, the overall impact on the aggregated labor volume during the ob-
servation period was tempered by an expanding working-age population (+0.4 percentage
points per annum) and an increasing labor participation rate (+0.2 percentage points per
annum). A consequential effect of the contracting (equilibrium) labor volume is the grad-
ually increasing marginal product of labor, as depicted in Figure 5 (left panel). Consistent
with the reduced availability of labor, we observe a decrease in cross-partial derivatives
(right panel) of the production function in Eq. 1, signaling a lower productivity of inputs.
While the labor volume was depressing economic growth between 1970 and 2000, it be-
came a growth driver from the onset of the millennium until 2019. This can be attributed,
in part, to a significant reduction in the natural rate of unemployment, dropping from 8.4
percent in 1999 to 2.4 percent in 2022, following the labor market reforms of the 2000s
(Hochmuth et al. 2021). Concurrently, the labor force participation rate increased from
around 65% to approximately 70%.
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Figure 5

However, these favorable conditions gradually diminished as the labor market approached
saturation in the 2010s. Since 2019, the contribution of the labor volume to growth has
once again turned negative. The decline in average working hours has been accelerating
since the mid-2010s, and the retirement of the baby boomers has begun to dampen labor
volume growth. Consequently, the labor volume contracted by 0.7% in 2022. As the peak
impact of increased migration flows due to Russia’s war of aggression against Ukraine
on the working-age population is anticipated in 2023, the decline in the labor volume
is expected to decelerate in 2023 before resuming at a rate of -0.8% per annum for the
remainder of the decade.

Figure 6 illustrates the breakdown of growth in capital services k̇ (for more details, see
Appendix C). The accumulation of tangible fixed assets and their utilization in the pro-
duction process has significantly fueled the expansion of potential output since the 1970s.
Capital service growth, with few exceptions, has been the primary contributor to poten-
tial growth, averaging a growth contribution of 0.8 percentage points per year since that
time. For instance, in 2022, the contribution of capital services to potential growth was
0.4 percentage points. While the growth contributions of capital services have consistently
been positive in the past, they are showing a declining trend over many years, except for
other capital, primarily intellectual property. Notably, the growth contributions of non-
residential buildings, such as factories or roads, have approached zero since the turn of
the millennium. Despite the marginal product of capital experiencing a decline until the
early 2000s, it has more or less stagnated over the last two decades (see Figure 5, middle
panel).
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Figure 6

5 Demographic Aging and the Future of Economic

Growth in Germany

Our projection reveals an average annual growth rate of 0.7% for potential output from
2023 to 2070 (see Figure 3). However, the projected average growth rates for the 2020s and
2030s are much lower, with 0.4 % and 0.5%, respectively. In line with Müller and Watson
(2016) and Müller et al. (2022), we find substantial uncertainty around our estimates
(see Figure 2). More precisely, by 2070, potential output would grow cumulatively by
between -0.2 % (5 % quantile of the simulated trajectories) and 2.4 % (95 % quantile of
the simulated trajectories) compared to 2022. Thus, it is therefore rather unlikely that
potential output will fall below the current level in the long term. However, it seems just as
unlikely that there will be a similarly strong increase as between the years 1970 and 2022.9

Nevertheless, the findings indicate a significant slowdown in potential output growth for
the next 50 years compared to the previous half-century. With growth projected to be
less than linear (see Figure 2) over this extensive period, it signifies a decline in economic
prospects spanning a generation.

Our projections provide important insights into the labor market outcome of the demo-
graphic transition (see Figure 4). The diminishing working-age population will impact
potential growth in the decades to come. Moreover, despite a substantial decrease in
the structural unemployment rate from 2005 to 2018, it is not expected to decrease any
further. Moreover, a continuous reduction in full-time hours is anticipated to result in
negative growth contributions from working hours. The baseline projection also suggests
that part-time and self-employment rates will stabilize near current levels, at around 40%
and 8%, respectively, until 2030, both with adverse effects on average working hours.
Finally, the labor participation rate is expected to rise from 69% in 2022 to 75% in 2070.

9More details on distributional estimates of potential output, its growth rate and the output gap can
be found in Appendix F.



16

In addition, the model anticipates a 0.4 percentage point yearly contribution of capital
investment to potential output growth (see Figure 3), with other capital expected to
contribute almost 28% to capital services by the end of the projection period (see Figure
14, left panel). This would indicate a major shift in the capital service composition.
Conversely, the capital service share of non-residential buildings is projected to decline
from 35% in 1970 to 13% in 2070. The projected increase in labor scarcity is accompanied
by steady increases (decreases) in its marginal product (the cross derivative), as shown
in Figure 5. The projected increase (decrease) of the marginal products imply, ceteris
paribus, higher (lower) real future labor (capital) compensations, at least in the very
long-run and in the absence of aggregate market concentration.

5.1 The Transmission of Demographic Shocks

By analyzing the breakdown of labor growth in Figure 4, we can understand the extent
to which the two external factors in the model, i.e. domestic population dynamics and
migration, are causing potential output to decrease via a reduction of the labor force. To
see the causal nature of population effects on labor participation and the labor force in
the model, recall that, abstracting from migration, population is determined by birth and
death rates. As the working age in our analysis starts at an age of 15 years, the birth rate
of t−15 and earlier in the past should be uncorrelated with innovations to potential output
in t. Assuming further that the death rate in t does not fluctuate too much, domestic
population and migration dynamics likely allow for a structural, i.e. causal interpretation.
However, variation in the remainder of the labor market aggregates does not lend itself
to a straightforward causal interpretation.

It is possible that demographic changes can transmit via labor market aggregates, such
as the number of working hours, that are not mechanically linked to population dynamics
in our model. These effects would escape the causal structure. To investigate how demo-
graphic shocks might translate into labor aggregates, we construct an auxiliary dynamic
structural model. In this model, we represent our collection of time series as zt, with
zt being a vector with dimensions K × 1. We consider both the reduced form and its
structural counterpart in the system

zt = νt + A1zt−1 + . . .+ Apzt−p + ut (19)

= νt + A1zt−1 + . . .+ Apzt−p +Bεt, t = 1, . . . , T, (20)

respectively, where Aj, j = 1, 2, . . . , p, are K ×K coefficient matrices and νt is a K × 1
dimensional vector of intercepts. Reduced form residuals ut in (19) are serially uncorre-
lated with mean zero and non-diagonal covariance matrix Σu. By assumption, structural
shocks εt in (20) have identity covariance, εt ∼ (0, IK), such that Σu = BB′. Finally, zt
has a Wold moving average (MA) representation, and hence, causality obtains.

This system is straightforward to estimate by means of least-squares algorithms. We
set p = 1. The median response as well as 68% and 90% confidence bands are derived
from a residual-based fixed-design moving block bootstrap in the spirit of Brueggemann
et al. (2016), which has the advantage of consistently handling non-Gaussian, possibly
heteroskedastic, shocks over 30 horizons. Using population dynamics to identify the
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effects of the German demographic transition on working hours, is unlikely to yield the
desired outcome. Instead, to approximate the effect of aging, we require a mapping from
population composition by age-groups to the real line. To this end, we use the old-
age-dependency ratio (i.e. the ratio of persons aged 65 years or older to the remaining
working-age population).

Due to the few observations in the yearly-frequency time dimension, we construct two
systems. The first model, SVAR 1, focuses on labor market aggregates, i.e. old-age-
dependency ratio, participation, and unemployment data (represented in natural loga-
rithms and scaled by 100). The purpose of this model is to investigate whether the
transmission pattern from aging shocks to labor participation (see previous Section) cor-
rectly shows up in aggregate models – which may increase our confidence in identification
– and to learn about a possible transmission into unemployment. This system spans
from 1970 to 2014, thus excluding the notable migration inflows of 2015, and arranges
these aggregates below the German old-age-dependency ratio. Identification of the system
is done recursively. In addition, SVAR 2 focuses on the disaggregated average working
hours, encompassing part-time rates and both full-time and part-time hours, sampled
from 1991 to 2020. Similar to SVAR 1, we order these disaggregates below the German
old-age-dependency ratio and identify the system recursively.

In both models, an aging shock refers to an increase in the old-age dependency ratio by
1% immediately following impact. Prior to estimation, the data in both models undergoes
orthogonalization to a quadratic trend by means of linear projection. Figure 7 depicts the
median as well as 68% and 90% probability mass of the bootstrapped identified impulse
responses. The first column of Figure 7 shows the results from SVAR 1. The dynamic
response patterns of the working-age population and labor participation are indeed as
expected (first and second rows, first column). While the working-age population de-
creases about 0.1% after 5 horizons, labor participation decreases on impact by the same
amount. In particular, since our labor force participation rate includes the age bracket
15–74, and workers aged 65 or older have extremely low participation rates, the aggregate
labor participation rate decreases. Interestingly, the unemployment rate (third row, first
column) seems to decrease in the long run (after 12 horizons), possibly pointing to an
increased scarcity of workers in aging societies. Overall, the findings from SVAR 1 lends
support to the identification scheme, as they are well aligned with prior expectations and
the baseline projection model.
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Figure 7



19

The second column of Figure 7 depicts the results from SVAR 2.10 Interestingly, the part-
time rate and the hours (full-time and part-time) increase for about 15 horizons each.
Whereas the part-time rate (first row, second column) increases on impact by almost 2%,
the effects on hours are a lot less pronounced. Importantly, the effect pattern implies
an ambiguous effect on average working hours, as full-time working hours and part-time
working hours increase average working hours, ceteris paribus. The effect patterns align
well with micro-data at our disposal (see next Section). In particular, working hours data
reveals that the age-group 65 and older has the highest full-time and part-time working
hours of all age groups. In a similar vein, this is also the group with the highest, part-time
rate. Thus, in all three cases, the model points towards composition effects where older
workers with particular labor market characteristics gain more weight in the aggregates.

5.2 A Micro-Data Perspective on labor Shortage

Given the ambiguous transmission of aging shocks into average working hours, as indi-
cated by our impulse response exercise, it becomes crucial to differentiate between overall
reductions in working hours (i.e., a collective decrease in working hours among all work-
ers) and composition changes (i.e., a higher proportion of workers either reducing their
hours or opting for part-time arrangements). This distinction is vital for assessing the
prospective trajectory of hours worked.

For this purpose, we utilize disaggregated hours data sourced from the Institute for Em-
ployment Research. This data spans from 1991 to 2022 and encompasses working hours
by full-time, part-time, and self-employed workers, categorized by gender and age-cohorts
at five-year age brackets. This dataset underscores the significance of both factors in
explaining the observed decline in full-time working hours. For instance, among male
full-time employees aged 60 to 64, the average annual working hours decreased from 1670
hours in 1991 to 1535 hours in 2022, a decrease of 8%. Similar trends are evident among
female workers, where the 2% decrease is more moderate.

To further explore the underlying reasons for the prolonged decrease in average working
hours, we undertake a series of counterfactual analyses. In doing so, we leverage the
decomposition of average working hours, recognizing it as a weighted combination of
part-time, full-time, and self-employment rates, as outlined in Eq. 4. For clarity, we
reproduce the equation here:

st = sstq
s
t + (1− qst )(s

p
t q
p
t + (1− qpt )s

f
t ).

It is worth noting that we use the raw data s∗ in the following exercises rather than the
filtered series s∗. The data enables us to compute age-cohort-based counterfactuals. For
example, we can calculate the hypothetical scenario of average working hours if the relative
size of workers’ age groups had not changed compared to 1991. While the outcomes of
this exercise may not permit a causal interpretation in the ‘structural’ sense, given that

10Upon visual inspection reveals that the identified aging shocks from both SVARs align very well.
In addition, they exhibit decent correlations. We obtain correlation coefficients of about 0.4 for linear
and rank correlations after the exclusion of one initial outlier, which seems large given the small samples.
Overall, we are confident that both models identify the same shocks.
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fundamental shocks (such as preference shocks to labor supply) might impact more than
one aggregate in Eq. 4, making it challenging to attribute variations within specific
aggregates to single fundamental shocks, our results remain highly informative regarding
the underlying economic transmission mechanism. Figure 8 compares

• realized average working hours (red line),
• a counterfactual of average working hours where the number of workers per age-
group remains at the level of 1991 (orange line),

• a counterfactual of average working hours where the number of working hours per
age-group remains at the level of 1991 (light blue line),

• a counterfactual of average working hours where the part-time rate is at the level
of 1991 – that is, only 20%, instead of 39% (yellow line), and a counterfactual of
average working hours where the self-employment rate is at the level of 1991 – that
is, 9.2% instead of 8.6% (dark blue line).

Figure 8 clearly illustrates a significant decline in average working hours from about
1540 hours per worker per year in 1991 to about 1320 hours in 2022 (red line). This
translates into a reduction of average weekly working hours by 16% between 1991 and
2022. However, the altered composition of age-brackets, as indicated by the orange line
(reflecting an increased number of older workers), appears insufficient to account for this
reduction. This implies that demographic shocks apparently did either not transmit via
the labor force composition or that they were associated with limited effects on hours in
the last three decades.

Figure 8

While the decrease in hours worked within each age group, represented by the light
blue line, explains a noteworthy portion of the overall decline, the primary factor behind
reduced average working hours seems to be the substantial rise in the part-time rate,
soaring from 19% in 1991 to 38% in 2022. In fact, average working hours would be at
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1473 in 2022, if the part-time rate still was at 19%, as in 1991. Another 40 average
working hours would be added, if average hours worked did not decline across almost all
age groups since 1991.

To clarify, although there are observable reductions in full-time working hours, partic-
ularly in recent years, the predominant driver of the long-term average working hours
decline is a compositional effect—specifically, the growing importance of part-time work
arrangements. This shift may be attributed to various factors, including preferences for
leisure over work, responsibilities such as childcare and elderly care (largely shouldered
by females in the prime working age of 20-59 years in Germany).

To grasp the dynamics of the part-time rate, Figure 9 contrasts several hypothetical
scenarios of the part-time rate with the actual observed rate (left panel). Furthermore,
the figure displays age-group-specific observed part-time rates (right panel). Evident from
both analyses is that, although there is a minor impact from workforce age-composition
(as indicated by the orange line in the left panel), substantial increases in the part-time
rate across all age groups contribute significantly to the overall rate surge between 1991
and 2022 (as seen in the comparison between the light blue and dark blue lines in the left
panel).

Figure 9

Nevertheless, notable disparities in both levels and growth rates exist among age groups
(right panel). Workers aged 65 or older exhibit the highest part-time rate, which experi-
enced a substantial surge in the 1990s and the beginning of the millennium but has since
stabilized around 65%. In contrast, the prime working age groups (20-59 years) demon-
strate persistent increases, rising from approximately 10% to around 30% (or slightly
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above). Note that the increase in the part-time rate of elderly workers and the implied
increase is a prime example of demographic transmission and consistent with the dynamic
effects of aging shocks on the aggregate part-time rate, as discussed above.

This pattern aligns with the increased labor force participation of women over the past
three decades, predominantly engaging in part-time work. This trend is on the rise.
According to our dataset, the part-time rate for women escalated from 33% in 1991 to
54% in 2022. Various factors may contribute to this shift. In particular, women with
children may find it unfeasible to offer full-time labor due to care-giving responsibilities
and insufficient childcare opportunities (German Council of Economic Experts 2023).
Thus, some might be forced to choose part-time employment and consequently elevating
the part-time rate.

The overarching conclusion drawn from our examination of average working hours is
that elevations (reductions) in the part-time rate present significant risks (chances) to
the overall labor volume. Although previous increases cannot be solely attributed to
demographic change, the impulse response patterns analyzed in Section 5.1 give rise to
the concern that demographic aging will contribute to heightened aggregate part-time
rates, ceteris paribus.11 This is particularly worrisome as the share of older workers,
who presently exhibit very high part-time rates, is anticipated to increase dramatically.
Consequently, this trend could lead to a depression in average hours, even beyond what
is anticipated in the model.

6 Putting the German Economy back on Track

Our modeling approach not only allows to track the propagation of adverse shocks to
growth, but it also allows to evaluate policy strategies that may increase growth in the
medium to long term. Given our key finding highlighting the unfortunate alignment
of low growth in TFP and capital services alongside labor volume reductions resulting
from demographic transition, a practical combination of two policy strategies becomes
apparent. Firstly, there is a need to enhance investment in capital goods and research to
elevate capital services and TFP. Secondly, addressing labor market issues or, at the very
least, alleviating the adverse effects of demographic transition is crucial.

11Recall that our model does not reflect possible general equilibrium effects. For instance, a larger
share of old workers with high part-time rates and retirees may increase the supply of informal child care
opportunities, which in turn may reduce part-time rates of prime work-age women. However, note that
these effects are unlikely to dominate the overall composition effect of more old workers that have very
high part-time rates.
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Figure 10

To illustrate the model’s capability in quantitatively assessing such considerations, we
prioritize the second strategy, which is more feasible to implement. In this context, we
delve into potential risks and opportunities for labor volume growth, all of which can be
influenced by well-crafted policies to varying degrees of (im)probability. For instance, as
depicted in Figure 10, if the anticipated rise in the labor participation rate to 75% is not
realized and remains at the current 69% (violet line), the median potential output per
capita in 2070 would decline by 3% compared to the baseline projection (black dashed
line).

In contrast, as illustrated in Figure 10, a higher net migration of around 400,000 individu-
als annually (light green line), as opposed to the assumed 250,000, could potentially raise
output by about 5% in 2070. However, given our assumption of weaker integration of
immigrants12 into the German labor market, potential output per capita might decrease
by 3% compared to the baseline projection.13

12We assume they have a labor participation rate of 70%, as the native population, but a structural
unemployment rate of 12%.

13As a theoretical alternative, if net migration comprised 400,000 individuals immediately and fully
integrated into the labor market (i.e., with zero unemployment rates and 100% labor participation; dark
green line), potential output would be 22% higher, with per capita potential output in 2070 being 13%
above the baseline projection. This represents only the direct effect on potential output. Additionally,
an increase in innovative activity may enhance the proportion of highly qualified individuals, potentially
leading to a more significant improvement in total factor productivity (TFP) and, consequently, potential
output.
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7 Conclusion

We explored the interaction between demographic dynamics and Germany’s potential
output dating back to 1970 using a Bayesian approach and the Cobb-Douglas production
function. Leveraging Bayesian techniques and a robust stochastic volatility framework,
we achieved precise estimation. Moreover, our methodology’s exceptional stability over
extended time periods allowed us to perform potential output projections up to 2070 and
to assess the quantitative impact of policy strategies.

Our long-term projections conditional on current economic dynamics imply that future,
anticipated demographic changes will exacerbate the decline of potential output growth,
with median growth rates projected to average around 0.4% throughout the 2020s. While
these projections are informative on their own, more importantly, they help to inform
policy makers with long-term objectives. For instance, long-term economic growth paths
are crucial for pension and health system design, fiscal budget planning or social security
reforms. They can also help investors make capital allocation decisions.

Several factors have contributed to Germany’s declining potential growth since 1970.
While a major factor in the long-run is the slowdown in total factor productivity growth,
the primary driver of recent growth declines, particularly since 2018, has been the shrink-
ing labor volume in Germany, even before the pandemic. In addition, our simulations
indicate that shocks in the context of the labor market during both the pandemic and
the recent energy crisis have permanently affected Germany’s growth prospects. While
demography alone may not be blamed for the past reductions of the labor volume – to
a large extent, this appears to be caused by very widespread adoption of part-time work
arrangements – demography is with very high probability the main determinant of future
labor volume reductions.

There are several promising avenues for future model enhancements. One significant ad-
vancement could involve partially endogenizing total factor productivity projections by
incorporating connections with human capital and labor input. Moreover, additional
model components can be considered, e.g. related to social security or the fiscal balance.
Furthermore, some components of the model, such as human capital, hours or labor par-
ticipation, may benefit from even more disaggregation to track demographic transmission
even better. Finally, examining pseudo-revisions over longer horizons or even on real-time
data could provide valuable insights into the model’s long-term performance.
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A Some Remarks

The outcome of our analysis results in a random sample for potential output, potential
output growth, and the output gap. The distributions of the samples of these aggregated
series are not straightforwardly attributable to common statistical families. This is a
notable difference to the case where potential was estimated from GDP directly (e.g. by
applying the filter outlined in Appendix G). To get an idea of their distributions, note
that, e.g. in case of potential output, we have

yt = yt − ỹt

then, by Eq. (1)

= at × (hlt)
α × (kt)

(1−α)

= (yt − (ht(btwt(1− ut)st))α × k
(1−α)
t )

× (ht(btwt(1− ut)st))
α

× (kt)
(1−α)

(21)

where the right-hand side expression is a composite of various samples. Note that for J

retained draws, ˆ̄y =
1

J

∑J
i=1 ȳ

j and Σ̂ȳ =
1

J − 1
(ȳj− ˆ̄y)(ȳj− ˆ̄y)

′
are unbiased estimators

of the mean and covariance of potential output. Now assume that the resulting sample
is multivariate normal distributed: Most of the right-hand side terms have normal or
log-normal posteriors and thus constitute normal and log-normal random samples. In
addition, the product of log-normal samples is known to be log-normal as well and the
sums of normal samples obey a normal distribution. It is known that log-normal distri-
butions converge towards normal distributions if their volatility approaches zero (trends,
by definition, have very small volatilities, see the Technical Appendix). Therefore, we can
regard the right-hand side as approximately normal.

Figure 11 compares the fifth, fiftieth and ninety-fifth quantiles of the resulting normal
(orange) with the respective quantiles of our sample (blue) for potential output (left
panel) and the output gap (right panel). In fact, both match very well. This underlines
that our disaggregated approach yields a very reasonable approximation to a normal
posterior of potential output that would, for example, emerge from filtering gross domestic
product directly under the assumption of normality. However, our approach generates
much additional information compared to a simple decomposition of GDP.
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Figure 11

B Labor Volume and Human Capital

Total hours work derive from the population in the working age (henceforth population),
labor participation, the structural unemployment rate and the average hours worked.
Figure 12 shows trend growth and gap components for the labor aggregates. Note that in
the case of aggregate labor participation, we observe a notable composition effect in the
2040s (third row, first column), as the age groups with higher participation rates become
relatively larger in the working age population.
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Figure 12
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C Capital Services

The required return to capital is shown in Figure 13 and capital service composition is
shown in Figure 14.

Figure 13

Figure 14

Figure 15 shows depreciation and disposal volumes computed from the investment pro-
jections for the entire investment projection distribution.
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Figure 15 Disposal and depreciation volumes for each capital good in billions of chained
2015 euros.
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D Analysis of Backward and Forward Revisions

In this appendix, we conduct a retrospective analysis of revisions made to potential output,
potential output growth, and the output gap.

D.1 The Role of Unanticipated Shocks to Trend Growth

The long-term forecasts fundamentally depend on the component-specific trend growth
forecasts (see Section 3). Recall that, while our approach allows us to project trend
and cycle of all components into the future, we take the population projection from the
Federal Statistical Office. Consequently, our model fully anticipates future population
dynamics. In contrast, new incoming data for the model’s remaining components may
lead to a revision of the adjustment path to long-run trend growth. Downward deviations
from long-run trend growth will lead to sluggish adjustment in the model’s dynamics,
deteriorating the long-run growth outlook. Economically, changes in trend growth can be
caused by i) shocks to deep parameters such as preferences or ii) output hysteresis, which
occurs when an economy operates below its full capacity for a long time, e.g. due to (a
series of) contractionary demand shocks causing lasting damage to its ability to produce
efficiently (Blanchard and Summers 1986, 1987, Aikman et al. 2022, Cerra et al. 2023).

To investigate how much unanticipated changes in trend growth not related to population
dynamics have led to the current dim growth outlook, we take advantage of the model’s
foresight about population dynamics. We conduct several runs of our model starting from
2018.14 Each time, we introduce a new piece of information for the following year (t+1).
For example, when computing the 2018 pseudo-vintage, we only use data up to 2017 and
project from there. We do not use real-time data vintages.15 This setup ensures that the
model conditions upon (anticipated) changes in demographics across all the simulated
vintages. As a result, any alteration in potential output from one simulated period in
year t to the next one in year t + 1 happens only because of shocks to trend growth.
This analysis helps us to figure out if the sluggish growth forecast is to due to exogenous
changes, indicating a clear link to demographic shifts in case trend growth revisions are
small, or if they stem from unexpected shifts in fundamentals as e.g. worker’s preferences,
leading to larger trend growth revisions.

Figure 16 illustrates the results of our experiment, clearly showing a substantial deteri-
oration in Germany’s economic growth outlook since 2018 (upper left panel). In fact,
whereas the average projected potential output growth rate until 2070 is 1.2 % in the
2018-model-vintage (when the model is unconscious of COVID-19 and the energy crisis,
but foreseeing reduced labor force and participation rate effects of demographic shifts),
it deteriorated to 0.7 % in the 2023-model vintage. While we see moderate downward
revisions in capital services and TFP (second column), the largest downward revision
clearly results from total working hours (lower left panel, first column), even when we

14Each pseudo-vintage incorporates a pseudo-business cycle forecast for the next year, e.g. in 2018 for
2019. Thus, starting this exercise in 2018 provides a simple counterfactual scenario free of any pandemic
effects.

15By avoiding real-time data and forecasts, our model remains largely unaffected by short-term pre-
diction errors. Importantly, historical revisions are minimized, except for random sampling errors.
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control for the projected demographic developments. Therefore, we investigate whether
trend growth deteriorations in labor market aggregates (other than population dynamics)
explain the downward adjustment of potential labor volume between 2018 and 2023.

Figure 16

Figure 17 shows the deterioration in trend (growth) of working hours by full-time workers,
one of the most important factors for the deterioration of the labor market outlook (left
panel). The median trend growth rate has decreased from -0.05% in 2015 to -0.75% in
2023, as indicated by the solid purple lines (right panel). It is important to emphasize
that the trend growth of full-time working hours reverts to its mean (zero) over time, as
explained in Section 3. However, real-world data consistently deviates from the model-
implied expectations, resulting in repeated downward adjustments of trend growth and
subsequently, revisions of the adjustment path to the mean.

It is crucial to note that even if full-time working hours swiftly reverted to their pre-
pandemic levels, potentially leading to an upward revision of the trend, they would likely
still remain below historical averages. This lends support to the hypothesis that the model
correctly detects a permanent deterioration of the trend growth of working hours that is
not exclusively linked to pandemic events. Such a deviation from historical norms would
continue to impact the overall growth outlook negatively compared to levels seen in 2018
or earlier.



36

Figure 17

Identifying the causes behind the decrease in full-time working hours presents a more intri-
cate challenge. It might seem convenient to attribute the entire decline to the COVID-19
pandemic, yet this oversimplifies the situation. The downturn in trend growth for full-
time working hours began much earlier, around 2015 (refer to Figure 17, upper left panel),
hinting that non-crisis-related factors could be contributing to this downward trend. Pos-
sible contributors to this decline include the reduction in overtime work (dropping from
an average of 22 overtime hours per worker in 2015 to 14 in 2022) and an upsurge in
sick leave hours (from 60 hours per worker annually in 2015 to 91 hours per worker in
2022). A basic estimation suggests that even considering both factors, full-time working
hours in 2022 would have been only 2 percentage points higher, which is merely half of
the difference (4%) between full-time working hours in 2015 and 2022.16

As innovations to working hours do not have a structural interpretation in our model-
ing framework, explaining the remaining half of the level shift in working hours, is not
straightforward. As for labor force and labor participation (see Figure 4), the projected
demographic transition may be a factor, with part-time rates being presumably high
among elderly workers. Recall that the model is agnostic regarding demography as a
critical factor influencing working hours. The causal link between demography and hours
outlined in Section 5.1 is essential to this.

16It is worth noting that changes in observed full-time working hours (see Figure 17, first column,
first row, dashed black line) during the pandemic may correlate with changes in ‘Kurzarbeit’ hours (a
policy for times of economic stress designed to reduce hours and avoid layoffs through government wage
support), but these are likely absorbed into the cyclical component during the filtering process (see the
Technical Appendix) and may not explain the decline in hours.
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D.2 Backward Revisions

Building upon the experiment detailed in Section D.1, we present a comparison of overall
revisions. Our data vintages are pseudo-real-time and the sample is limited by data
availability. The second column specifically focuses on revisions for the year 2018 between
the nowcast with the 2018 data and estimation vintage and the backcast with the most
recent 2023 vintage. Remarkably, our experiment reveals that potential output undergoes
minimal revisions over the entire estimation period, with an average revision rate of
just -0.14%. Furthermore, the model provides estimates for potential output growth
and the output gap spanning five decades that show a high degree of consistency across
various vintages, on average. Notably, neither cyclical nor anti-cyclical revisions appear
to dominate in our analysis.

Average 1970 - 2018 2018
Potential Output Revision in % -0.137 1.334
Difference Potential Output Growth 0.003 0.567
Difference Output Gap 0.133 -1.330

Table 3 Revisions of potential output estimates. First column reports the time-average of
overall revisions between the 2018 pseudo-real-time model vintage and the 2023 vintage.
Second column reports the revisions for the year 2018 for both vintages.

Nonetheless, it is important to emphasize the relatively substantial revisions to potential
output estimated with data up to 2023 compared to 2018, as indicated in the second
column of Table 3. Note that Figure 18 provides the full picture.While the level of
potential output experiences a 1% revision (equivalent to approximately 32 billion euros),
a significant portion of the revision is retrospectively shifted from potential output growth
to the output gap. This outcome is a natural consequence of Bayesian updating. As
time passes, the model incorporates more data. From the model’s perspective, what
initially appeared to be a temporary under-utilization of capacity evolves into a substantial
deterioration of the long-term growth outlook (see Section 5).

To illustrate this, consider the estimated median of trend growth in full-time employee
working hours for the year 2018. In the 2018 vintage, this median is calculated as -0.27,
with the corresponding cyclical component at -0.11. However, in the 2023 vintage, while
the cyclical component for 2018 is close to zero (0.01), trend growth has deteriorated
significantly to -0.41. It is crucial to stress that this updating behavior is not a flaw but
a deliberate and a desirable characteristic of the model. Unless economic deteriorations
prove to be persistent, regardless of their magnitude, they are absorbed into the cyclical
component. This leads to stable estimates of potential output levels over time, on average.
In contrast, it is well recognized that the Hodrick and Prescott (1997) filter can produce
misleading signals when confronted with large but potentially transitory fluctuations (as
during COVID-19) in data (Hamilton 2018). Consequently, production-function models
relying on this or similar filters, as regularly used by policy institutions to disentangle
trends and cycles, may be susceptible to such shortcomings as well.

Finally, we emphasize that different models serve different purposes. In light of our find-
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ings, it becomes evident that for real-time assessments of the output gap, specialized now-
casting procedures, such as the one proposed by Berger and Ochsner (2022) for Germany,
are better suited to provide timely and accurate information to policy makers. However,
it is worth noting that from a policy perspective, these multivariate models do have lim-
itations in that they lack the (semi-)structural interpretation that a production-function
model offers. Therefore, when assessing the structural development of an economy, the
latter proves to be superior.
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Figure 18



40

D.3 Scars from Recent Economic Turmoil

The beginning of the new decade brought about a confluence of challenges for the German
economy, with the impacts of the COVID-19 pandemic and the concurrent energy crisis
significantly depressing investment trends. The persistence of the pandemic, particularly
with the emergence of new variants, continued to disrupt global supply chains and hamper
economic activities. The energy crisis of 2022, characterized by surging energy prices as
well as the monetary policy response to high inflation further exacerbated the economic
challenges faced by the German economy (German Council of Economic Experts 2022).
In particular, the spike in energy costs placed additional strains on businesses, especially
those in energy-intensive sectors.

Against this backdrop, it is unsurprising that not only the labor input deteriorates since
our first model pseudo-vintage (2018), but so do capital services and TFP (see Figure 16).
Whereas the forecast revisions of TFP do not exhibit a systematic pattern, this is differ-
ent for capital services. While projected capital services experience only minor forecast
revisions until the pseudo-2021-vintage, we observe downward revision in the pseudo-2022-
vintage. This revision is primarily attributed to the decline in equipment investment trend
growth, that was revised downward from 2.5% annual in 2021 to 1.5% annual in 2022.
This shift in projections allows for the potential influence of output hysteresis, e.g. via
deteriorated expectations of future returns. For instance, Fatás (2000) shows that in an
endogenous growth model transitory disturbances, e.g., because of an uncertainty shock,
can result in persistent effects for capital accumulation. Similarly, limited investment-
financing due to the current monetary policy stance manifests in smaller trend growth for
equipment investments and, thus, may affect capital accumulation permanently.
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E Output Gap

Actual GDP fluctuates around potential output. The deviation between both measures is
the ‘output gap’ and defined as the difference between actual GDP and potential output
expressed in percent of potential output. Examining the output gap and comparing it
to established estimates may also help clarify the quality of our results. A closed out-
put gap, where actual GDP equals potential output, serves as an indicator of economic
stability and efficiency. A positive output gap signals overheating and the possibility of
rising inflation. According to standard business cycle theory, this can result in inflation-
ary pressures, prompting central banks to contemplate raising interest rates to temper
economic activity (Gali 2015, Walsh 2017). In response, central banks raise interest rates
to dampen demand. Conversely, when the actual GDP falls short of the potential out-
put, resources are underutilized. Due to low demand, firms lay off employees which leads
to higher unemployment. To increase economic activity, policymakers may implement
expansionary measures to close the output gap.

Figure 19 illustrates the output gap as implied by our model.17 The output gap exhibits a
cyclical pattern with a zero mean by design. It typically turns negative during economic
recessions, as identified by the German Council of Economic Experts (e.g. 2017, 2021,
2022). Subsequently, it recovers over time. One of the most significant downturns, reach-
ing as low as -4.8%, occurred during the recession in the early 1980s during the second
oil crisis.

To investigate the determinants of the output gap, we decompose it into contributions
that result from the TFP gap and the labor volume gap. Note that the model is in reduced
form such that the decomposition does not allow for a causal interpretation. However,
the decomposition sheds light onto the question whether the underlying structural shocks
transmit through TFP or the labor market. The TFP gap measured as the difference
between the Solow residuum and the trend aligns quite close with most of the German
economy recessions documented by the GCEE. Clearly, the output gap is mostly driven
by TFP-inefficiencies. Note that TFP measures technical as well as (factor-)allocative
efficiency, where in broad terms, allocative inefficiencies should be transitory and thus
enter the TFP gap whereas technical efficiency is rather a long-term phenomenon and
should therefore enter TFP growth (and thus, not transmit into the output gap).

With exception of the 2001-2003 recession, the other´downturn episodes are characterized
by a drop in TFP below trend. While there are other periods with below trend growth, the
decline and bounce-back in TFP growth was short-lived in these non-recession periods.
The persistent negative output gap observed in the 1980s is also reflected in an increase
in the unemployment gap to about 2% in 1983/84. Subsequently, inefficiencies resulting
from the labor market seem to be come less relevant for the output gap, including the
Great Recession of 2008/9. Only in the COVID-19 episode, substantial underutilization
of capacities arises from the labor volume, most likely due to decreases at the intensive
margin due to the ‘Kurzarbeit’ policy.

Our estimate is aligns well with most of the other estimates by the International Monetary
Fund (IMF), the Federal Ministry for Economic Affairs and Climate Action (BMWK) and

17The estimate displays moderate estimation uncertainty, as displayed in Figure 21 in Appendix F.
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the OECD that only begin in 1981 (1991 in case of the OECD estimate). Especially, the
depths of the troughs in 2009 and 2020 are well aligned. Morley and Wong (2020) suggests
that a well-behaved output gap should positively correlate with future inflation, and
negatively correlate with future output growth, signaling a potential trend reversal. To
assess these relationships, we calculate the correlations between our output gap estimate
and the one-period-ahead quarter-on-quarter growth rates of both GDP and the consumer
price index. Our analysis reveals a positive correlation of 0.4 with future GDP growth and
a negative correlation of -0.x with inflation for the sample period. These correlation values
provide valuable insights into the plausibility and behavior of our output gap estimate,
aligning with the expected economic patterns.

Figure 19
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F Further Distributional Estimates

Figures 20, 21 and 22 depict distributional estimates (5% to 95% quantiles in blue, 50%
quantile in black) of potential output growth, the output gap and total factor productivity.
Shaded areas indicate the short-run and the long-run forecast horizons, respectively.

Figure 20

Figure 21
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Figure 22

G Baseline filter

This Appendix outlines the estimation of the baseline filter. To disentangle persistent
and transitory signals, we employ a standard unobserved-component framework. Thus,
in this section, trends and cycles do not necessarily have a structural interpretation.
Furthermore, note that the notation is specific to this section. To estimate the unobserved
components, we rely on a straightforward precision-sampling algorithm in the spirit of
Chan and Jeliazkov (2009) or Mertens (2023). A similar model is presented by Chan
et al. (2013). All computations are implemented in R by using the btsm package (?).
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G.1 Trend-Cycle Specification

Our goal is to decompose observed data xt into its trend x
τ
t and its cycle xct . The equations

are

xt = xτt + xct (22)

xτt = xτt−1 + xgt + ητt ητt ∼ T N
(
0, σ2

τ

)
[xτt −xτt−1,x

τ
t −xτt−1)

(23)

xgt = xgt−1 + ηgt ηgt ∼ N
(
0, σ2

g

)
(24)

xct = ϕtx
c
t−1 + ηct ηct ∼ N (0, exp (ψt)) (25)

ϕt = ϕt−1 + ηϕt ηϕt ∼ T N
(
0, σϕ

)
[0−ϕt−1,1−ϕt−1)

(26)

ψt = ψt−1 + ηψt ηψt ∼ N
(
0, σ2

ψ

)
(27)

where N denotes the normal distribution, T N denotes the truncated normal distribution,
the innovation distribution subscript in Eq. 23 indicates bounded support. The innova-
tions are mutually orthogonal across Eqs. 23 – 27 in all t = 1 . . . T and xτt and xτt are
known constants.

To find the prior distributions of all components, a more compact notation is helpful.
Stacking the components in Eqs. 22 – 27 over T , we obtain

x = xτ + xc (28)

D1x
τ = (xτ0,0

′
T−1)

′ + xg + ητ ητ ∼ T N (0T ,Στ ) (29)

D1x
g = (xg0,0

′
T−1)

′ + ηg ηg ∼ N (0T ,Σg) (30)

Dϕx
c = ηc ηc ∼ N

(
(ϕ1(x0 − xτ0),0

′
T−1)

′, exp (Ψ)
)

(31)

D1ϕ = (ϕ0,0
′
T−1)

′ + ηϕ ηϕ ∼ T N (0T ,Σϕ) (32)

D1ψ = (ψ0,0
′
T−1)

′ + ηψ ηψ ∼ N (0T ,Σψ) , (33)

where bold expressions refer to vectors and matrices and 0T−1 is a T − 1 × 1 vector of
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zeros and

x∗ =


x1
x2
...
xT

 η∗ =


η1
η2
...
ηT

 ϕ =


ϕ1

ϕ2
...
ϕT



D1 =


1
−1 1

−1 1
. . . . . .

−1 1

 Dϕ =


1

−ϕ2 1
−ϕ3 1

. . . . . .

−ϕT 1



Σ∗ =


σ2
∗
σ2
∗
σ2
∗

. . .

σ2
∗

 Ψ =


ψ1

ψ2

ψ4

. . .

ψT



where the non-specified elements are zero and ∗ indexes τ, g, ϕ, ψ and
Σϕ = diag(ξϕ, σ

2
ϕ . . . σ

2
ϕ). Our goal is to sample from the joint density p (θ) with θ =(

xτ ,xg,ϕ,Ψ, σ2
τ , σ

2
g , σ

2
ϕ, σ

2
ψ, x

τ
0, x

g
0, ϕ0, ψ0

)
. We can do so with the help of Gibbs sampling,

using precision-based algorithms in the spirit of Chan and Jeliazkov (2009). Given the
stacked transition equations (28)-(33), it is straightforward to find explicit expressions for
some of the prior distributions, i.e.

p (xτ ) is T N
(
D−1

1 (xτ + xg), D−1′

1 ΣτD
−1
1

)
[xτ ,xτ)

(34)

p (xg) is N
(
D−1

1 x
g, D−1′

1 ΣgD
−1
1

)
(35)

p (xc) is N
(
(ϕ1(x0 − xτ0),0

′
T−1)

′, D−1′

ϕ ΨD−1
ϕ

)
(36)

p (ϕ) is T N
(
D−1

1 ϕ
c
, D−1′

1 ΣϕD
−1
1

)
[0,1)

(37)

where xτ = (xτ0,0
′
T−1)

′, xg = (xg0,0
′
T−1)

′, ϕc = (ϕ0,0
′
T−1) as well as ψ = (ψ0,0

′
T−1). In

addition, we assume normal priors for initial states and we use standard inverse-Gamma
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priors with shape a and scale b for the time-constant innovation variances, i.e.

p (xτ0) is N (µτ , ξτ) (38)

p (xg0) is N (µg, ξg) (39)

p (ϕ0) is N (µϕ, ξϕ) (40)

p (ψ0) is N (µψ, ξψ) (41)

p
(
σ2
τ

)
is IG (aτ , bτ ) (42)

p
(
σ2
g

)
is IG (ag, bg) (43)

p
(
σ2
ψ

)
is IG (aψ, bψ) (44)

p
(
σ2
ϕ

)
is IG (aϕ, bϕ) . (45)

G.2 Conditional Distributions of the Trend and Trend Growth

To find the posterior distributions, we need to specify the log conditional likelihoods. Let
θ− denote the vector of all parameters that are conditioned upon. For Eq. 22, the log
conditional likelihood obtains as

log p
(
x|θ−

)
∝− 1

2

T∑
t=1

ψt −
1

2
(x−D−1

ϕ E(xc)− xτ )′

×D′
ϕΣ

−1
c Dϕ(x−D−1

ϕ E(xc)− xτ )
(46)

where Σc = exp(Ψ)−1, E(xc) = (ϕ1(x0 − xτ0),0
′
T−1)

′, and Ñ is the standard normal
cumulative distribution function, such that the conditional posterior of xτ follows as

p
(
xτ |θ−

)
is T N

(
Ω−1
τ (D1Σ

−1
τ (xτ + xg) +D′

ϕΣ
−1
c Dϕ(x−D−1

ϕ E(xc))),Ω−1
τ

)
[xτ ,xτ)

(47)
with Ωτ =D1Σ

−1
τ D1 +D

′
ϕΣ

−1
c Dϕ. Then,

xc = x− xτ . (48)

To sample xg, note that the log conditional likelihood of D1(x
τ −D1x

τ ) is proportional
to

−1

2
(D1(x

τ −D1x
τ )− xg)′Σ−1

τ (D1(x
τ −D1x

τ )− xg), (49)

such that we find that

p
(
xg|θ−

)
is N

(
Ω−1
g (D′

1Σ
−1
τ x

g +D′
1Σ

−1
g D1(D1(x

τ −D1x
τ ))),Ω−1

g

)
(50)

with Ωg = Σ−1
τ +D′

1Σ
−1
g D1.

G.3 Conditional Distribution of the Stochastic Volatility

To estimate the stochastic volatilities of xc, we use the auxiliary mixture sampler of Kim
et al. (1998). That is, we compute x̃c = log

(
(Dϕx

c)2
)
and approximate the log-normal

innovations by means of a seven-point-normal-mixture distribution. Let η̃c ∼ N (µm,Σm)
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denote the log-normal mixture distribution conditional on the mixture indicators. The
log conditional likelihood of x̃c is proportional to

−1

2
(x̃c −ψ − µm)′Σm(x̃c −ψ − µm) (51)

In conjunction with the prior of the stochastic volatilities, we find that

p
(
ψ|θ−

)
is N

(
Ω−1
ψ

(
D′

1Σ
−1
ψ ψ

c
+Σ−1

m (x̃c − µm)
)
,Ω−1

ϕ

)
[0.1)

(52)

with Ωϕ = Σ−1
m +D′

1Σ
−1
ψ D1.

G.4 Conditional Distribution of the Time-Varying AR(1) Pa-
rameter

Define xcϕ as a matrix that has the first lag of xc on its diagonal. From the conditional
log likelihood

1

2
(xc − xcϕϕ)′Σ−1

c (xc − xcϕϕ) (53)

and the corresponding prior for ϕ, we see that the log conditional posterior of ϕ is
proportional to

−1

2
ϕ′D′

1Σ
−1
ϕ D1ϕ−

T∑
t=2

log

(
Ñ
(
1− ϕt−1

σϕ

)
− Ñ

(
−ϕt−1

σϕ

))
. (54)

Thus,

p
(
ϕ|θ−

)
is T N

(
Ω−1
ϕ

(
D1Σ

−1
ϕ ϕ

c
+X ′

ϕΣ
−1
c x

c
)
,Ω−1

ϕ

)
[0.1)

(55)

with Ωϕ = D′
1Σ

−1
ϕ D1 + X

′
ϕΣ

−1
c Xϕ. To sample from this distribution, we use the R

package TruncatedNormal (Botev 2017, Belzile 2020).

G.5 Conditional Distributions of the Initial Conditions

To sample the initial conditions xτ0 (if not calibrated), xg0, ϕ1 and ψ0, it is useful to note
that they appear only in the first equations (i.e. t = 1) of the relevant transition equation
systems specified above. That is, e.g. for the case of xτ0, we have

xτ1 = xτ0 + ητ1 . (56)

Therefore, using similar arguments as above, we can derive that

p
(
xτ0|θ−

)
is N

(
Ω−1
xτ0

(
µψ
ξψ

+
xτ1
σ2
τ

)
,Ω−1

xτ0

)
, (57)



49

with Ωxτ0
=

1

ξτ
+

1

σ2
τ

and

p
(
xg0|θ−

)
is N

(
Ω−1
xg0

(
µψ
ξψ

+
xg1
σ2
g

)
,Ω−1

xg0

)
, (58)

with Ωxg0
=

1

ξg
+

1

σ2
g

and

p
(
ϕ0|θ−

)
is T N

(
Ω−1
ϕ0

(
µψ
ξψ

+
ϕ1

σ2
ϕ

)
,Ω−1

ϕ0

)
I[0.1)

, (59)

with Ωϕ0 =
1

ξϕ
+

1

σ2
ϕ

and

p
(
ψ0|θ−

)
is N

(
Ω−1
ψ0

(
µψ
ξψ

+
ψ1

σ2
ψ

)
,Ω−1

ψ0

)
, (60)

with Ωψ0 =
1

ξψ
+

1

σ2
ψ

.

G.6 Conditional Distributions of the Innovation Variances

Similarly, in the spirit of the previous arguments, it can be shown that

p
(
σ2
τ |θ−

)
is IG

(
aτ +

T

2
, bτ +

1

2
(xτ − xτ01T )

′D′
1D1(x

τ − xτ01T )

)
(61)

p
(
σ2
g |θ−

)
is IG

(
ag +

T

2
, bg +

1

2
(xg − xg01T )

′D′
1D1(x

g − xg01T )

)
(62)

p
(
σ2
ψ|θ−

)
is IG

(
aψ +

T

2
, bψ +

1

2
(ψ − ψ01T )

′D′
1D1 (ψ − ψ01T )

)
(63)

p
(
σ2
ϕ|θ−

)
is IG

(
aϕ +

T

2
, bϕ +

1

2
(ϕ− ϕ01T )

′D′
1D1 (ϕ− ϕ01T )

)
(64)

where 1T is the T × 1 unit vector.

G.7 Gibbs Sampler

The estimation routine then involves iterating through the following steps, conditional on
the previous draws (the draw index is suppressed for convenience):

Block 1
1. Draw xτ from Eq. 47.
2. Draw xτ0 from Eq. 57.
3. Draw σ2

τ from Eq. 61.
Block 2
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4. Draw xg from Eq. 50.
5. Draw xg0 from Eq. 58.
6. Draw σ2

g from Eq. 62.
Block 3

7. Compute xc with the help of Eq. 48.
8. Draw ϕ from Eq. 55.
9. Draw ϕ0 from Eq. 59.
10. Draw σ2

ϕ from Eq. 64.
Block 4
11. Draw ψ from Eq. 52.
12. Draw ψ0 from Eq. 60.
13. Draw σ2

ψ from Eq. 63.

In our analysis, we generated a total of 360,000 samples from the conditional posterior
distribution. To ensure the reliability of our results, we discarded the initial 10,000 samples
as they can be less representative of the true distribution. To enhance the quality of our
samples, we only kept every seventh sample, which helps improve the overall mixing and
efficiency of our estimation process.

To predict future values from our model, we rely on the posterior distribution of the
model’s parameters and latent states. This predictive distribution is constructed by sim-
ulating new innovations and then iterating the state equations. We carried out this
simulation process using the R programming language, leveraging the capabilities of the
btsm package, as outlined in Ochsner (forthcoming).
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H Random Walk Model

In certain situations, our objective is to estimate the parameters of a process denoted as
xτt , which does not exhibit cyclical variations. The equations governing this process are
as follows:

xτt = xτt−1 + xgt + ητt ητt ∼ N
(
0, σ2

τ

)
(65)

xg
t
= xgt−1 + ηgt ηgt ∼ N

(
0, σ2

g

)
, (66)

where the definitions from Appendix G apply.

We aim to determine the prior distributions of the various components of this process.
To simplify the notation, we stack these equations over the time period T , resulting in
the following representations:

D1x
τ = xg + ητ ητ ∼ N (0T ,Στ ) (67)

D1x
g = ηg ηg ∼ N (0T ,Σg) , (68)

where again the definitions from Appendix G apply. Notably, the model presented in a
previous section nests these equations, which means that the same computational algo-
rithms can be applied using the R programming language and the btsm package.
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