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I Brief Model Summary

To improve overall accessibility, this appendix briefly reproduces the entire model. We
aim to decompose observed output (approximated by gross domestic product), denoted
as y, into two distinct components: potential output ȳ and the output gap ỹ. The
model structure is adopted from Havik, McMorrow, Orlandi, Planas, Raciborski, Roeger,
Rossi, Thum-Thysena, and Vandermeulen (2014) as well as Breuer and Elstner (2020)
and augmented with human capital. To identify potential output, we estimate the model
given by

ȳ = ā(h̄l̄)αk̄(1T−α) (1)

l̄ = bw̄(1T − ū)s̄ (2)

w̄ =
5∑
i=1

b̄ib̄
−1
w̄i (3)

s̄ = s̄sq̄s + (1T − q̄s)(s̄pq̄p + (1T − q̄p)s̄f ) (4)

h̄ = exp{βx} (5)

˙̄k =
4∑
j=1

v̇j(
cj

cj−
)−1 (6)

v̇j = v̇j+–v̇j− (7)

żj = v̇j+–żj− (8)

c̄j = max(0T , r̄ + δ̄j − E(d̄j)) (9)

r = (1T −α)yv−1 + d (10)

where, in Eq. (1), ȳ, ā, h̄, l̄ and k̄ are a T × 1 vectors of potential output, potential total
factor productivity, potential human capital, potential labor and potential capital use.
0 ≤ α ≤ 1 is a known constant, namely the output elasticity of labor. We set α = 0.66,
which is broadly in line with the sample period average of the labor share of gross value
added in Germany. 1T is the T × 1 unit vector.

In Eqs. (2)–(5), which specify the labor component of the model,

• l̄ is the potential labor volume
• b̄ is the potential working age population
• w̄ is potential aggregate labor participation
• w̄i and b̄i denote potential labor participation of age group i as well as the share of
age group i of the working age population

• s̄ is the potential of total number of hours worked
• s̄p is the potential of number of hours worked by part-time employees
• s̄s is the potential of number of hours worked by self-employed persons
• s̄f is the potential of number of hours worked by full-time employees
• q̄s is the rate of self-employment
• q̄p is the rate of part-time employment
• ū is the non-accelerating rate of unemployment
• β is the marginal percentage rate of return to education in Germany (we set β = 9,
which is broadly in line with Anger, Plünnecke, and Schmidt (2010) and Pfeiffer
and Stichnoth (2021))

• x is the average number of years of schooling, which is derived from the data of
de la Fuente and Doménech (2006) and interpolated to yearly frequency by means
of polynomial smoothing.

In Eqs. (6)–(10), which summarize the capital component of the model,
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• ˙ denotes growth rates
• kj denotes use of capital
• vj denotes real gross fixed assets of capital good j (equipment, other capital, resi-
dential and nonresidential capital)

• v+j denotes real additions to gross fixed assets of capital good j
• v−j denotes real disposals from gross fixed assets of capital good j
• zj denotes real net fixed assets of capital good j
• v−j denotes real depreciation of net fixed assets of capital good j
• cj denotes capital costs of capital good j
• cj− denotes total capital costs less than capital costs of capital good j
• r is the required return to capital
• δj is the depreciation rate of capital good j
• E(dj) is the expected return to capital good j.

Potential capital use k̄ is then constructed as a Törnqvist index in line with Knetsch

(2013) from ˙̄k with the base year 1969 and an initial value of 100. The required return
r derives from the zero-profit condition in Eq. (10), i.e., from an aggregate perspective,
return to capital equals the capital share of output (here approximated by gross value
added) over gross fixed capital (OECD 2009). The depreciation rate can be computed as
volume of depreciation for capital good j in t over volume of net fixed assets of capital
good j in t. Finally, as we assume rational agents with full information, we approximate
expected returns (approximated by the the investment deflator) by the current trend
growth rate.
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II Total Factor Productivity

In this appendix, we discuss the prior assumptions and the outcomes of our estimation
regarding total factor productivity (TFP).

We estimate TFP, obtained as the Solow residual, in natural logarithms, multiplied by
100. We drop the time-varying autoregressive coefficient from the baseline model. For
our analysis, we generate 360,000 samples from the conditional posterior. To ensure our
results are reliable, we discard the initial 10,000 samples as they may not yet represent the
true distribution. To reduce autocorrelation and avoid redundancy, we keep only every
seventh sample from the remaining pool.

We evaluate the performance of our sampling process to ensure its accuracy. We do this
by means of Geweke t-tests and by examining integrated autocorrelation time (see e.g.
the Appendix to Berger, Everaert, and Pozzi (2021) for a detailed description). These
evaluations show that our sampling process has achieved good convergence, indicating
that our results are stable and reliable. The full convergence results are available upon
request.

II.1 Prior Distributions

Table 1 provides an overview of the prior information we used in the TFP (total factor
productivity) model.

Innovation variances

quantiles

a b
√

Q(0.01)
√

Q(0.99)

yτt innovation variance σ2
τ IG (a, b) 40 0.01 0.013 0.019

ygt innovation variance σ2
g IG (a, b) 35 0.05 0.032 0.047

ψct innovation variance σ2
ψc IG (a, b) 5 4 0.587 1.768

Regression parameters

quantiles

µ ξ Q(0.01) Q(0.99)

yτt initial state yτ0 calibrated -693
ygt initial state yg0 N (µ, ξ) 1.5 0.152 1.151 1.849
ψct initial state ψc0 N (µ, ξ) 0 12 -2.326 2.326

Table 1 Prior distributions for relevant innovation variance and regression parameters of
the total factor productivity model. Q(·) denotes the quantile function.

We set the initial condition for TFP close to its actual observed value. For the innovation
variances (essentially, how much TFP can change from one period to another), we use
relatively detailed prior information in an inverse-gamma framework. This means we
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have a clear idea of how much we expect TFP to fluctuate over time that derives from
the trend-cycle setup. When it comes to the initial estimate of TFP trend growth, we do
not impose strong priors. Instead, we have moderately nonrestrictive prior information.
This allows the model some flexibility in determining how TFP’s trend may evolve.

II.2 Detailed Estimation and Projection Results

We estimate the baseline filter without the autoregressive component in the cycle and
without bounding the trend component. Figures 1 depicts posterior results of all param-
eters associated with the TFP-specification. The upper panel of Figure 1 displays the
TFP trend results, divided by 100.
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Figure 1 Trend component of total factor productivity (first row), its volatility (second
row), trend growth (third row) and its initial condition and volatility (fourth row).
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III Capital Stock

In this appendix, we will cover three key aspects related to capital use. First, we discuss
the required rate of return. Then, we delve into investment and investment deflators. In
addition, we provide details on our prior assumptions and the results of our estimation.

III.1 Required Rate of Return

The required rate of return (RRR) to capital derives from Eq. 10. In a first model, the
‘core model’ we decompose (1T − α)yv−1 into trend and cycle and in a second ‘capital
gain model’, we filter d. Note that the cyclical variation in d does not enter r, as rational
agents would not form their expectations based on cyclical variations in capital gains.
That is, the cycle of r that ultimately gives rise to the cycle of capital use, is derived
from cyclical variation in (1T − α)yv−1 alone. For both models, drop the time-varying
autoregressive coefficient from the baseline specification.

For our analysis, we generate 360,000 samples from the conditional posterior. To ensure
our results are reliable, we discard the initial 10,000 samples as they may not yet represent
the true conditional posterior. To reduce autocorrelation and avoid redundancy, we keep
only every seventh sample from the remaining pool. We evaluate the performance of our
sampling process to ensure its accuracy. We do this by means of Geweke t-tests and by
examining integrated autocorrelation time. These evaluations show that our sampling
process has achieved good convergence, indicating that our results are stable and reliable.
The full convergence results are available upon request.

III.1.1 Prior Distributions

Table 2 summarizes information on the prior distributions for both the ‘core model’ and
the ‘capital gain model’.

We set the initial conditions for both trends close to their actual observed values. We
use relatively detailed prior information for the innovation variances and trend growth.
For the remaining priors (which cover various aspects of the model), we adopt relatively
uninformative priors. The core component model is estimated in logarithms multiplied
by 100.

For our analysis, we generate 360,000 samples from the conditional posterior. To ensure
our results are reliable, we discard the initial 10,000 samples as they may not yet represent
the true distribution. To reduce autocorrelation and avoid redundancy, we keep only every
seventh sample from the remaining pool.
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Innovation variances

quantiles

a b
√

Q(0.01)
√

Q(0.99)

core model
yτt innovation variance σ2

τ IG (a, b) 50 1 0.121 0.169
ygt innovation variance σ2

g IG (a, b) 50 2 0.172 0.239
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

capital gains model
yτt innovation variance σ2

τ IG (a, b) 140 0.012 0.001 0.001
ygt innovation variance σ2

g IG (a, b) 130 0.1 0.025 0.031
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

Regression parameters

quantiles

µ ξ Q(0.01) Q(0.99)

core model
yτt initial state yτ0 calibrated 201.49
ygt AR(1) yg0 N (µ, ξ) 0.95 0.12 0.704 0.998
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

capital gains model
yτt initial state yτ0 calibrated 28
ygt initial state yg0 N (µ, ξ) 2.47 0.012 2.457 2.503
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

Table 2 Prior distributions for relevant innovation variance and regression parameters of
the required rate of return models. Q(·) denotes the quantile function.

III.1.2 Detailed Estimation and Projection Results

We estimate the baseline filter without the autoregressive component in the cycle and
without bounding the trend component. Figures 2 shows the outcomes related to all the
parameters in the core required rate of return specification. Figures 3 provides similar
insights but for the capital gain model.
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Figure 2 Trend component of the core component of the required rate of return (first
row), its volatility (second row), trend growth (third row) and its initial condition and
volatility (fourth row).
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Figure 3 Trend component of the capital gains component of the required rate of return
(first row), its volatility (second row), trend growth (third row) and its initial condition
and volatility (fourth row).
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III.2 Investment

In this appendix, we present detailed results related to real investment. Specifically, we
look at real investment levels of chained volumes, where the base year is 2015. Investment
is crucial to compute real additions to capital, v+j as real investment in time t weighted
by the ratio of nominal investment and nominal gross fixed assets in time t − 1. Before
conducting our analysis, we made a transformation to the investment data. We converted
all the real investment series into natural logarithms and then scaled the values by multi-
plying them by 100. We drop the time-varying autoregressive coefficient from the baseline
model.

For our analysis, we generate 360,000 samples from the conditional posterior. To ensure
our results are reliable, we discard the initial 10,000 samples as they may not yet represent
the true distribution. To reduce autocorrelation and avoid redundancy, we keep only every
seventh sample from the remaining pool. We evaluate the performance of our sampling
process to ensure its accuracy. We do this by means of Geweke t-tests and by examining
integrated autocorrelation time. These evaluations show that our sampling process has
achieved good convergence, indicating that our results are stable and reliable. The full
convergence results are available upon request.

III.2.1 Prior Distribution

Tables 3 and 4 summarize information on the prior distributions for all real investment
models.

Innovation variances

quantiles

a b
√
Q(0.01)

√
Q(0.99)

equipment capital
yτt innovation variance σ2

τ IG (a, b) 80 0.1 0.031 0.041
ygt innovation variance σ2

g IG (a, b) 80 1.5 0.121 0.157
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768
residential capital

yτt innovation variance σ2
τ IG (a, b) 80 0.1 0.031 0.041

ygt innovation variance σ2
g IG (a, b) 60 1.5 0.137 0.186

ψct innovation variance σ2
ψc IG (a, b) 5 4 0.587 1.768

nonresidential capital
yτt innovation variance σ2

τ IG (a, b) 80 2 0.140 0.182
ygt innovation variance σ2

g IG (a, b) 80 2 0.140 0.182
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768
other capital

yτt innovation variance σ2
τ IG (a, b) 80 0.001 0.003 0.004

ygt innovation variance σ2
g IG (a, b) 70 0.01 0.010 0.013

ψct innovation variance σ2
ψc IG (a, b) 5 4 0.587 1.768

Table 3 Prior distributions for relevant innovation variance and regression parameters of
the investment models. Q(·) denotes the quantile function.
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Regression parameters

quantiles

µ ξ Q(0.01) Q(0.99)

equipment capital
yτt initial state yτ0 calibrated 435.4
ygt initial state yg0 N (µ, ξ) 0 12 -2.326 2.326
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

residential capital
yτt initial state yτ0 calibrated 471.9
ygt initial state yg0 N (µ, ξ) 0 12 -2.326 2.326
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

nonresidential capital
yτt initial state yτ0 calibrated 485
ygt initial state yg0 N (µ, ξ) 1 0.252 0.418 1.582
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

other capital
yτt initial state yτ0 calibrated 192.45
ygt initial state yg0 N (µ, ξ) 15.5 1
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

Table 4 Prior distributions for relevant innovation variance and regression parameters of
the total factor productivity model. Q(·) denotes the quantile function.

III.2.2 Detailed Estimation and Projection Results

In the following, we present detailed estimation results.

• Figures 4 presents detailed estimation and projection results for real investment into
equipment.

• Figures 5 presents detailed estimation and projection results for real investment into
residential capital.

• Figures 6 presents detailed estimation and projection results for real investment into
nonresidential capital.

• Figures 7 presents detailed estimation and projection results for real investment into
other capital.
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Figure 4 Trend component of real investment into equipment capital (first row), its volatil-
ity (second row), trend growth (third row) and its initial condition and volatility (fourth
row).
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Figure 5 Trend component of real investment into residential capital (first row), its volatil-
ity (second row), trend growth (third row) and its initial condition and volatility (fourth
row).
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Figure 6 Trend component of real investment into nonresidential capital (first row), its
volatility (second row), trend growth (third row) and its initial condition and volatility
(fourth row).
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Figure 7 Trend component of real investment into other capital (first row), its volatility
(second row), trend growth (third row) and its initial condition and volatility (fourth
row).



xviii

III.3 Investment Deflator

In this appendix, we present detailed estimation and prior specification results related to
investment deflators. Investment deflators are essential because they are used as expec-
tations for capital gains in the capital cost equation. They help us anticipate the changes
in the value of capital assets over time. These deflators are expressed in logarithmic
form and are based on chained volumes, where the reference year is 2015. We drop the
time-varying autoregressive coefficient from the baseline model.

For our analysis, we generate 360,000 samples from the conditional posterior. To ensure
our results are reliable, we discard the initial 10,000 samples as they may not yet represent
the true distribution. To reduce autocorrelation and avoid redundancy, we keep only every
seventh sample from the remaining pool. We evaluate the performance of our sampling
process to ensure its accuracy. We do this by means of Geweke t-tests and by examining
integrated autocorrelation time. These evaluations show that our sampling process has
achieved good convergence, indicating that our results are stable and reliable. The full
convergence results are available upon request.

III.3.1 Prior Distribution

Tables 5 and 6 show the priors for innovation variance and regression parameters, respec-
tively.
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Innovation variances

quantiles

a b
√
Q(0.01)

√
Q(0.99)

equipment capital
yτt innovation variance σ2

τ IG (a, b) 90 0.12 0.003 0.004
ygt innovation variance σ2

g IG (a, b) 50 0.012 0.004 0.005
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

residential capital
yτt innovation variance σ2

τ IG (a, b) 90 0.1 0.030 0.038
ygt innovation variance σ2

g IG (a, b) 90 0.15 0.036 0.046
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

nonresidential capital
yτt innovation variance σ2

τ IG (a, b) 80 0.1 0.031 0.041
ygt innovation variance σ2

g IG (a, b) 80 0.5 0.070 0.091
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

other capital
yτt innovation variance σ2

τ IG (a, b) 80 0.12 0.010 0.013
ygt innovation variance σ2

g IG (a, b) 70 0.1 0.033 0.044
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

Table 5 Prior distributions for relevant innovation variance parameters of the investment
deflator models. Q(·) denotes the quantile function.
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Regression parameters

quantiles

µ ξ Q(0.01) Q(0.99)

equipment capital
yτt initial state yτ0 calibrated 399.49
ygt initial state yg0 N (µ, ξ) 4.67 12 2.344 6.996
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

residential capital
yτt initial state yτ0 calibrated 318.57
ygt initial state yg0 N (µ, ξ) 9.43 12 7.104 11.756
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

nonresidential capital
yτt initial state yτ0 calibrated 335.92
ygt initial state yg0 N (µ, ξ) 7.88 12 5.554 10.206
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

other capital
yτt initial state yτ0 calibrated 429.21
ygt initial state yg0 N (µ, ξ) 0.68 12 -1.646 3.006
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

Table 6 Prior distributions for relevant innovation variance and regression parameters of
the investment deflator models. Q(·) denotes the quantile function.
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III.3.2 Detailed Estimation and Projection Results

In the following, we present detailed estimation results.

• Figures 8 presents detailed estimation and projection results for the equipment
capital deflator.

• Figures 9 presents detailed estimation and projection results for the residential cap-
ital deflator.

• Figures 10 presents detailed estimation and projection results for the nonresidential
capital deflator.

• Figures 11 presents detailed estimation and projection results for the other capital
deflator.
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Figure 8 Trend component of deflator of investment into equipment capital (first row), its
volatility (second row), trend growth (third row) and its initial condition and volatility
(fourth row).



xxiii

Figure 9 Trend component of deflator of investment into residential capital (first row), its
volatility (second row), trend growth (third row) and its initial condition and volatility
(fourth row).
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Figure 10 Trend component of deflator of investment into nonresidential capital (first
row), its volatility (second row), trend growth (third row) and its initial condition and
volatility (fourth row).
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Figure 11 Trend component of deflator of investment into other capital (first row), its
volatility (second row), trend growth (third row) and its initial condition and volatility
(fourth row).

IV Labor

This appendix presents detailed prior specification and estimation results for hours worked
(Appendix IV.1), the natural rate of unemployment (Appendix IV.2), and participation
rates (Appendix IV.3). The components aggregate as shown in Eq. 2.
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IV.1 Hours

This appendix provides a detailed account of the prior specifications and estimation out-
comes related to hours. It is important to note that all trends are bounded from zero
and above. Differing from the baseline filter, we employ an autoregressive AR(1) spec-
ification for trend growth with the exception of aggregate historical hours (1970–1990).
The autoregressive coefficient is readily sampled using the Metropolis-Hastings algorithm
introduced by Chib and Greenberg (1994). This choice prevents components with neg-
ative trend growth from approaching the lower bound in the limit. Before commencing
our analysis, we applied a data transformation to the hours data set. This transformation
involved converting all series with the exception of aggregate historical hours (1970–1990)
into their natural logarithms and subsequently scaling the values by a factor of 100.
Dis-aggregated information in the spirit of Eq. 4 is only available after the year 1991.
Therefore, we filter total hours for the period of 1970 – 1990 and hours for full-time,
part-time and self-employed workers as well as part-time and self-employment rates after
1991.

IV.1.1 Prior Distributions

In Tables 7 and 8, we have assembled a set of parameter values that define our prior
distributions. To conduct our analysis, we generated a total of 360,000 samples from
the conditional posterior. To ensure the reliability of our results, we decided to discard
the initial 10,000 samples as they may not yet accurately represent the true distribution.
Concerning the part-time and self-employment rates, we obtained 101,000 draws from the
conditional posterior distribution and discarded the initial 1,000 draws. From the remain-
ing pool of samples, we retained only every seventh sample. We took this step to reduce
autocorrelation and avoid unnecessary redundancy in our results. Our sampling method’s
convergence was rigorously assessed through various diagnostic tests, including Geweke
t-tests and integrated autocorrelation times. The results from these tests provided strong
evidence that our sampler had achieved a satisfactory level of convergence. Furthermore,
the examination of trace plots yielded similar insights into the convergence of our model.
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Regression parameters

quantiles

µ ξ Q(0.01) Q(0.99)

part-time rate
yτt initial state yτ0 calibrated 18.51

self-employment rate
yτt initial state yτ0 calibrated 9.17

aggregate hours 1970–1990
yτt initial state yτ0 calibrated 757.93

full-time hours
yτt initial state yτ0 calibrated 740.21

part-time hours
yτt initial state yτ0 calibrated 664.98

self-employed hours
yτt initial state yτ0 calibrated 774.01

all hours
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

all models
ygt AR(1) ϕg N (µ, ξ) 0 12 -2.326 2.326

Trend bounds

all hours
parameter value

yτ upper trend bound yτ ∞
yτ lower trend bound yτ 0

all rates
yτ upper trend bound yτ 100
yτ lower trend bound yτ 0

all models

ϕg upper AR bound ϕg 1
ϕg lower AR bound ϕg −1

Table 7 Prior distributions for relevant innovation variance and regression parameters of
hours as well as self-employment and part-time rates. Q(·) denotes the quantile function.
The initial state for historical aggregate hours has the same prior as the AR(1) coefficient
for the remainder of the models.
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Innovation variances for rates

quantiles

a b
√
Q(0.01)

√
Q(0.99)

rates
yτt innovation variance σ2

τ IG (a.b) 20 1 0.177 0.300
ygt innovation variance σ2

g IG (a.b) 20 0.5 0.125 0.212

hours
yτt innovation variance σ2

τ IG (a.b) 30 0.09 0.045 0.069
ygt innovation variance σ2

g IG (a.b) 25 0.45 0.109 0.174
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

Table 8 Prior distributions for relevant innovation variance and regression parameters of
hours as well as self-employment and part-time rates. Q(·) denotes the quantile function.

IV.1.2 Detailed Estimation and Projection Results

In the following, we present detailed estimation results.

• Figures 12 presents detailed estimation and projection results for total hours for the
period of 1970 – 1990.

• Figures 13 presents detailed estimation and projection results for full-time hours
since 1991.

• Figures 14 presents detailed estimation and projection results for part-time hours
since 1991.

• Figures 15 presents detailed estimation and projection results for self-employment
hours since 1991.

• Figure 16 presents detailed estimation and projection results for the self-employment
rate since 1991.

• Figure 17 presents detailed estimation and projection results for part-time rate since
1991.
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Figure 12 Trend component of total hours 1970 – 1991 (first row), its volatility (second
row), trend growth (third row) and its autoregressive parameters and volatility (fourth
row).
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Figure 13 Trend component of hours worked by full-time employees (first row), its volatil-
ity (second row), trend growth (third row) and its autoregressive parameters and volatility
(fourth row).
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Figure 14 Trend component of hours worked by part-time employees (first row), its volatil-
ity (second row), trend growth (third row) and its autoregressive parameters and volatility
(fourth row).
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Figure 15 Trend component of hours worked by self-employed persons (first row), its
volatility (second row), trend growth (third row) and its autoregressive parameters and
volatility (fourth row).
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Figure 16 Self employment rate (first row), its volatility (second row), trend growth (third
row) and its autoregressive coefficient and volatility (fourth row).
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Figure 17 Part-time employment rate (first row), its volatility (second row), trend growth
(third row) and its autoregressive coefficient and volatility (fourth row).
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IV.2 Natural Rate of Unemployment

This appendix presents detailed prior specification and estimation results for the non-
accelerating inflation rate of unemployment (NAIRU). This component relies on the base-
line filter, including a time-varying autoregressive coefficient and an autoregressive trend
growth specification. For the sake of interpretation, the time-varying autoregressive co-
efficient has bounded support over the interval [0, 1). Specification tests show that this
coefficient seems to capture most of the non-trend variation, such that including the
inflation signal does not improve the fit.

In our analysis, we generate a sample from the condition posterior consisting of 360,000
draws. To ensure the reliability of our findings, we discard the initial 10,000 samples,
as they might not accurately reflect the true posterior. To enhance the efficiency of
our results and minimize autocorrelation, we select only every seventh sample from the
remaining pool. We conducted a comprehensive assessment of the convergence of our
sampling method, employing a range of diagnostic tests that included Geweke t-tests and
integrated autocorrelation times. The outcomes of these assessments strongly suggest
that our sampler has achieved a satisfactory level of convergence. Furthermore, when we
examined trace plots, they yielded similar insights into the convergence behavior of our
model. Full convergence results are available upon request.

IV.2.1 Prior Distributions

Table 9 summarizes the parameter values for the prior distributions.
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Innovation variances

quantiles

a b
√
Q(0.01)

√
Q(0.99)

yτt innovation variance σ2
τ IG (a.b) 40 0.3 0.073 0.106

ygt innovation variance σ2
g IG (a.b) 60 0.05 0.025 0.034

ϕct innovation variance σ2
ϕc IG (a.b) 10 1 0.231 0.492

ψct innovation variance σ2
ψc IG (a.b) 5 4 0.587 1.768

Regression parameters

quantiles

µ ξ Q(0.01) Q(0.99)

yτt initial state yτ0 calibrated 0.77
ygt initial state yg0 N (µ, ξ) 0 12 -2.326 2.326
ϕct initial state ϕc0 T N (µ, ξ) 0 10 0.01 0.99
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

Trend bounds

parameter value
yτ upper trend bound yτ 100
yτ lower trend bound yτ 0

ϕct upper AR bound ϕct 1
ϕct lower AR bound ϕct 0

Table 9 Prior distributions for relevant innovation variance and regression parameters of
the NAIRU model. Q(·) denotes the quantile function.

IV.2.2 Detailed Estimation and Projection Results

Figures 18 presents detailed estimation and projection results.
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Figure 18 NAIRU and data (first row) and its parameters: volatility (second row), trend
growth (third row), its auto-regressive parameter and volatility (fourth row).
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IV.3 Labor Participation

This appendix presents detailed prior specification and estimation results for labor par-
ticipation rates. We assess five age cohorts separately: the yound adults (15-19 year old),
the prime work age (20-59 year olds) as well as the early retirement agers (60-64 year olds)
and the retirement agers (65-69 as well as 70-74 year olds). In contrast to the baseline
filter, we use an AR(1) with intercept specification for trend growth, where the autore-
gressive coefficient can be easily sampled by means of the Metropolis-Hastings algorithm
of Chib and Greenberg (1994) and the intercept can be sampled as a regression parameter
in the Gibbs framework. The series are aggregated to workforce level by weighting them
with their respective share of the working population.

For our analysis, we generate a total of 360,000 samples from the conditional posterior
distributions. In order to ensure the reliability of our results, we exclude the initial 10,000
samples, as they may not accurately represent the true distribution. To improve the
efficiency of our dataset and minimize autocorrelation, we select only every seventh sample
from the remaining pool. We conducted a rigorous evaluation of the convergence of our
sampling method using various diagnostic tests, including Geweke t-tests and integrated
autocorrelation times. The outcomes of these tests strongly indicate that our sampler has
achieved a satisfactory level of convergence. Furthermore, our examination of trace plots
yielded similar insights into the convergence of our model. Full convergence results are
available upon request.

IV.3.1 Prior Distributions

Tables 10 and 11 summarizes the parameter values for the prior distributions.

Innovation variances for all models

quantiles

a b
√
Q(0.01)

√
Q(0.99)

participation in age groups 15 - 19 and 60 – 64 years
yτt innovation variance σ2

τ IG (a.b) 50 0.1 0.038 0.053
ygt innovation variance σ2

g IG (a.b) 30 0.5 0.106 0.163
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

remaining models
yτt innovation variance σ2

τ IG (a.b) 50 0.1 0.038 0.053
ygt innovation variance σ2

g IG (a.b) 40 0.5 0.094 0.137
ψct innovation variance σ2

ψc IG (a, b) 5 4 0.587 1.768

Table 10 Prior distributions for relevant innovation variance parameters of labor partici-
pation models. Q(·) denotes the quantile function.
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Regression parameters

quantiles

µ ξ Q(0.01) Q(0.99)

participation in age group 15 - 19 years
yτt initial state yτ0 calibrated 63.76

participation in age group 20 - 59 years
yτt initial state yτ0 calibrated 70.77

participation in age group 60 - 64 years
yτt initial state yτ0 calibrated 42.23

participation in age group 65 - 69 years
yτt initial state yτ0 calibrated 5.11

participation in age group 70 - 74 years
yτt initial state yτ0 calibrated 2.54

all models
ygt intercept µg N (µ, ξ) 0 12 -2.326 2.326
ygt AR(1) ϕg T N (µ, ξ) 0 12 -0.972 0.972
ψct initial state ψc0 N (µ, ξ) 0 22 -4.653 4.653

Trend bounds for all models

parameter value
yτ upper trend bound yτ 100
yτ lower trend bound yτ 0

ϕg upper AR bound ϕg 1
ϕg lower AR bound ϕg -1

Table 11 Prior distributions for relevant regression parameters of labor participation mod-
els. Q(·) denotes the quantile function.

IV.3.2 Detailed Estimation and Projection Results

In the following, we present detailed estimation results.

• Figures 19 presents detailed estimation and projection results for the age cohort of
15-19 year olds.

• Figures 20 presents detailed estimation and projection results for the age cohort of
20-59 year olds.

• Figures 21 presents detailed estimation and projection results for the age cohort of
60-64 year olds.

• Figures 22 presents detailed estimation and projection results for the age cohort of
65-69 year olds.

• Figures 23 presents detailed estimation and projection results for the age cohort of
70-74 year olds.
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Figure 19 Trend of labor participation rate in the age group of 15 - 19 year olds and
data (first row) and its parameters: volatility (second row), trend growth (third row), its
auto-regressive parameter, intercept and volatility (fourth row).
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Figure 20 Trend of labor participation rate in the age group of 20 - 59 year olds and
data (first row) and its parameters: volatility (second row), trend growth (third row), its
auto-regressive parameter, intercept and volatility (fourth row).
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Figure 21 Trend of labor participation rate in the age group of 60 - 64 year olds and
data (first row) and its parameters: volatility (second row), trend growth (third row), its
auto-regressive parameter, intercept and volatility (fourth row).
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Figure 22 Trend of labor participation rate in the age group of 65 - 69 year olds and
data (first row) and its parameters: volatility (second row), trend growth (third row), its
auto-regressive parameter, intercept and volatility (fourth row).
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Figure 23 Trend of labor participation rate in the age group of 70 - 74 year olds and
data (first row) and its parameters: volatility (second row), trend growth (third row), its
auto-regressive parameter and volatility (fourth row).
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V Human Capital

This appendix presents detailed prior specification and estimation results for human cap-
ital. We specify human capital to follow a random walk with a time-varying random-walk
drift, as in Appendix ??. Human capital is approximated by the average years of schooling
taken from de la Fuente and Doménech (2006). Before conducting our analysis, we made
a transformation to the data. We converted the series into natural logarithms and then
scaled the values by multiplying them by 100. We specify human capital as a random
walk without a cyclical component. For our analysis, we generate 101,000 samples from
the conditional posteriors. To ensure our results are reliable, we discard the initial 1,000
samples as they may not yet represent the true distribution.

V.1 Prior Distributions

Table 12 summarizes information on the prior distributions.

Innovation variances

quantiles

a b
√
Q(0.01)

√
Q(0.99)

yτt innovation variance σ2
τ IG (a, b) 40 5 0.298 0.432

ygt innovation variance σ2
g IG (a, b) 40 0.1 0.042 0.061

Regression parameters

quantiles

µ ξ Q(0.01) Q(0.99)

yτt initial state yτ0 calibrated 232.55
ygt initial state yg0 N (µ, ξ) 0.91 0.12 0.677 1.143

Trend bounds

parameter value
yτ upper trend bound yτ ∞
yτ lower trend bound yτ 12

Table 12 Prior distributions for relevant innovation variance and regression parameters of
the human capital model. Q(·) denotes the quantile function.
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V.2 Detailed Estimation and Projection Results

Figure 24 depicts the estimation results.

Figure 24 Human capital (first row), its initial condition and volatility (second row), trend
growth (third row) as well as its initial condition and volatility (fourth row).
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